Comparison of Convolutional neural network training parameters for
detecting Alzheimers disease and effect on visualization
- URL: http://arxiv.org/abs/2008.07981v1
- Date: Tue, 18 Aug 2020 15:21:50 GMT
- Title: Comparison of Convolutional neural network training parameters for
detecting Alzheimers disease and effect on visualization
- Authors: Arjun Haridas Pallath, Martin Dyrba
- Abstract summary: Convolutional neural networks (CNN) have become a powerful tool for detecting patterns in image data.
Despite the high accuracy obtained from CNN models for MRI data so far, almost no papers provided information on the features or image regions driving this accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNN) have become a powerful tool for detecting
patterns in image data. Recent papers report promising results in the domain of
disease detection using brain MRI data. Despite the high accuracy obtained from
CNN models for MRI data so far, almost no papers provided information on the
features or image regions driving this accuracy as adequate methods were
missing or challenging to apply. Recently, the toolbox iNNvestigate has become
available, implementing various state of the art methods for deep learning
visualizations. Currently, there is a great demand for a comparison of
visualization algorithms to provide an overview of the practical usefulness and
capability of these algorithms.
Therefore, this thesis has two goals: 1. To systematically evaluate the
influence of CNN hyper-parameters on model accuracy. 2. To compare various
visualization methods with respect to the quality (i.e. randomness/focus,
soundness).
Related papers
- Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Integrating Preprocessing Methods and Convolutional Neural Networks for
Effective Tumor Detection in Medical Imaging [0.0]
This research presents a machine-learning approach for tumor detection in medical images using convolutional neural networks (CNNs)
The study focuses on preprocessing techniques to enhance image features relevant to tumor detection, followed by developing and training a CNN model for accurate classification.
Experimental results demonstrate the effectiveness of the proposed approach in accurately detecting tumors in medical images.
arXiv Detail & Related papers (2024-02-25T23:49:05Z) - Machine learning based biomedical image processing for echocardiographic
images [0.0]
The proposed method uses K-Nearest Neighbor (KNN) algorithm for segmentation of medical images.
The trained neural network has been tested successfully on a group of echocardiographic images.
arXiv Detail & Related papers (2023-03-16T06:23:43Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Evaluating U-net Brain Extraction for Multi-site and Longitudinal
Preclinical Stroke Imaging [0.4310985013483366]
Convolutional neural networks (CNNs) can improve accuracy and reduce operator time.
We developed a deep-learning mouse brain extraction tool by using a U-net CNN.
We trained, validated, and tested a typical U-net model on 240 multimodal MRI datasets.
arXiv Detail & Related papers (2022-03-11T02:00:27Z) - Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
Recent advances have shown that the convolutional Neural Network (CNN) architectures can be used to design a Computer Aided Diagnostic (CAD) System for breast cancer detection.
We consider some contemporary CNN models for binary classification of breast histopathology images.
We have validated the trained CNN networks on a publicly available BreaKHis dataset, for 200x and 400x magnified histopathology images.
arXiv Detail & Related papers (2022-01-04T03:09:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.