論文の概要: Information-Theoretic Odometry Learning
- arxiv url: http://arxiv.org/abs/2203.05724v1
- Date: Fri, 11 Mar 2022 02:37:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-14 13:07:27.900565
- Title: Information-Theoretic Odometry Learning
- Title(参考訳): 情報理論オドメトリー学習
- Authors: Sen Zhang, Jing Zhang, Dacheng Tao
- Abstract要約: 生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
- 参考スコア(独自算出の注目度): 83.36195426897768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a unified information theoretic framework for
learning-motivated methods aimed at odometry estimation, a crucial component of
many robotics and vision tasks such as navigation and virtual reality where
relative camera poses are required in real time. We formulate this problem as
optimizing a variational information bottleneck objective function, which
eliminates pose-irrelevant information from the latent representation. The
proposed framework provides an elegant tool for performance evaluation and
understanding in information-theoretic language. Specifically, we bound the
generalization errors of the deep information bottleneck framework and the
predictability of the latent representation. These provide not only a
performance guarantee but also practical guidance for model design, sample
collection, and sensor selection. Furthermore, the stochastic latent
representation provides a natural uncertainty measure without the needs for
extra structures or computations. Experiments on two well-known odometry
datasets demonstrate the effectiveness of our method.
- Abstract(参考訳): 本稿では,ロボット工学や視覚工学における重要な要素であるオドメトリ推定を目的とした学習動機づけ手法のための統一的な情報理論フレームワークを提案する。
本稿では、この問題を変動情報ボトルネック目的関数の最適化として定式化し、ポーズ非関連情報を潜在表現から排除する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
具体的には,情報ボトルネックフレームワークの一般化エラーと潜在表現の予測可能性について検討する。
これらは性能保証だけでなく、モデル設計、サンプル収集、センサー選択のための実用的なガイダンスを提供する。
さらに、確率潜在表現は、余分な構造や計算を必要としない自然な不確実性尺度を提供する。
2つのよく知られたオドメトリデータセットの実験により,本手法の有効性が示された。
関連論文リスト
- Sparse Modelling for Feature Learning in High Dimensional Data [0.0]
本稿では,高次元データセットにおける次元削減と特徴抽出に対する革新的なアプローチを提案する。
提案フレームワークはスパースモデリング技術を包括的パイプラインに統合し,効率的かつ解釈可能な特徴選択を実現する。
我々は、特に木材表面欠陥検出の文脈において、機械学習におけるスパースモデリングの理解と応用を進めることを目的としている。
論文 参考訳(メタデータ) (2024-09-28T14:17:59Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - Hierarchical Graph Neural Networks for Proprioceptive 6D Pose Estimation
of In-hand Objects [1.8263882169310044]
マルチモーダル(ビジョンとタッチ)データを組み合わせた階層型グラフニューラルネットワークアーキテクチャを提案する。
また、グラフベースのオブジェクト表現を学習するために、モダリティ内および横断的に情報を流す階層的なメッセージパッシング操作を導入する。
論文 参考訳(メタデータ) (2023-06-28T01:18:53Z) - FUNCK: Information Funnels and Bottlenecks for Invariant Representation
Learning [7.804994311050265]
データから不変表現を学習すると主張する一連の関連する情報漏えいとボトルネック問題について検討する。
本稿では,この情報理論の目的である「側情報付き条件付きプライバシ・ファンネル」の新たな要素を提案する。
一般に難解な目的を考慮し、ニューラルネットワークによってパラメータ化された補正変分推論を用いて、抽出可能な近似を導出する。
論文 参考訳(メタデータ) (2022-11-02T19:37:55Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
画像中の深層学習に基づくサラエント物体検出を容易にするプログレッシブ自己誘導損失関数を提案する。
我々のフレームワークは適応的に集約されたマルチスケール機能を利用して、健全な物体の探索と検出を効果的に行う。
論文 参考訳(メタデータ) (2021-01-07T07:33:38Z) - Robust Ego and Object 6-DoF Motion Estimation and Tracking [5.162070820801102]
本稿では,動的多体視覚計測における高精度な推定と一貫した追跡性を実現するためのロバストな解を提案する。
セマンティック・インスタンスレベルのセグメンテーションと正確な光フロー推定の最近の進歩を活用して、コンパクトで効果的なフレームワークを提案する。
追従点の品質と運動推定精度を向上させる新しい定式化SE(3)運動と光流が導入された。
論文 参考訳(メタデータ) (2020-07-28T05:12:56Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。