Information-Theoretic Odometry Learning
- URL: http://arxiv.org/abs/2203.05724v1
- Date: Fri, 11 Mar 2022 02:37:35 GMT
- Title: Information-Theoretic Odometry Learning
- Authors: Sen Zhang, Jing Zhang, Dacheng Tao
- Abstract summary: We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
- Score: 83.36195426897768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a unified information theoretic framework for
learning-motivated methods aimed at odometry estimation, a crucial component of
many robotics and vision tasks such as navigation and virtual reality where
relative camera poses are required in real time. We formulate this problem as
optimizing a variational information bottleneck objective function, which
eliminates pose-irrelevant information from the latent representation. The
proposed framework provides an elegant tool for performance evaluation and
understanding in information-theoretic language. Specifically, we bound the
generalization errors of the deep information bottleneck framework and the
predictability of the latent representation. These provide not only a
performance guarantee but also practical guidance for model design, sample
collection, and sensor selection. Furthermore, the stochastic latent
representation provides a natural uncertainty measure without the needs for
extra structures or computations. Experiments on two well-known odometry
datasets demonstrate the effectiveness of our method.
Related papers
- Sparse Modelling for Feature Learning in High Dimensional Data [0.0]
This paper presents an innovative approach to dimensionality reduction and feature extraction in high-dimensional datasets.
The proposed framework integrates sparse modeling techniques into a comprehensive pipeline for efficient and interpretable feature selection.
We aim to advance the understanding and application of sparse modeling in machine learning, particularly in the context of wood surface defect detection.
arXiv Detail & Related papers (2024-09-28T14:17:59Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - Hierarchical Graph Neural Networks for Proprioceptive 6D Pose Estimation
of In-hand Objects [1.8263882169310044]
We introduce a hierarchical graph neural network architecture for combining multimodal (vision and touch) data.
We also introduce a hierarchical message passing operation that flows the information within and across modalities to learn a graph-based object representation.
arXiv Detail & Related papers (2023-06-28T01:18:53Z) - FUNCK: Information Funnels and Bottlenecks for Invariant Representation
Learning [7.804994311050265]
We investigate a set of related information funnels and bottleneck problems that claim to learn invariant representations from the data.
We propose a new element to this family of information-theoretic objectives: The Conditional Privacy Funnel with Side Information.
Given the generally intractable objectives, we derive tractable approximations using amortized variational inference parameterized by neural networks.
arXiv Detail & Related papers (2022-11-02T19:37:55Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - Robust Ego and Object 6-DoF Motion Estimation and Tracking [5.162070820801102]
This paper proposes a robust solution to achieve accurate estimation and consistent track-ability for dynamic multi-body visual odometry.
A compact and effective framework is proposed leveraging recent advances in semantic instance-level segmentation and accurate optical flow estimation.
A novel formulation, jointly optimizing SE(3) motion and optical flow is introduced that improves the quality of the tracked points and the motion estimation accuracy.
arXiv Detail & Related papers (2020-07-28T05:12:56Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
We propose a deep dimension reduction approach to learning representations with essential characteristics.
The proposed approach is a nonparametric generalization of the sufficient dimension reduction method.
We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero.
arXiv Detail & Related papers (2020-06-10T14:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.