Sparse Modelling for Feature Learning in High Dimensional Data
- URL: http://arxiv.org/abs/2409.19361v1
- Date: Sat, 28 Sep 2024 14:17:59 GMT
- Title: Sparse Modelling for Feature Learning in High Dimensional Data
- Authors: Harish Neelam, Koushik Sai Veerella, Souradip Biswas,
- Abstract summary: This paper presents an innovative approach to dimensionality reduction and feature extraction in high-dimensional datasets.
The proposed framework integrates sparse modeling techniques into a comprehensive pipeline for efficient and interpretable feature selection.
We aim to advance the understanding and application of sparse modeling in machine learning, particularly in the context of wood surface defect detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an innovative approach to dimensionality reduction and feature extraction in high-dimensional datasets, with a specific application focus on wood surface defect detection. The proposed framework integrates sparse modeling techniques, particularly Lasso and proximal gradient methods, into a comprehensive pipeline for efficient and interpretable feature selection. Leveraging pre-trained models such as VGG19 and incorporating anomaly detection methods like Isolation Forest and Local Outlier Factor, our methodology addresses the challenge of extracting meaningful features from complex datasets. Evaluation metrics such as accuracy and F1 score, alongside visualizations, are employed to assess the performance of the sparse modeling techniques. Through this work, we aim to advance the understanding and application of sparse modeling in machine learning, particularly in the context of wood surface defect detection.
Related papers
- AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines [0.0]
Anomaly detection in manufacturing pipelines remains a critical challenge, intensified by the complexity and variability of industrial environments.
This paper introduces AssemAI, an interpretable image-based anomaly detection system tailored for smart manufacturing pipelines.
arXiv Detail & Related papers (2024-08-05T01:50:09Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Unsupervised Anomaly Detection via Nonlinear Manifold Learning [0.0]
Anomalies are samples that significantly deviate from the rest of the data and their detection plays a major role in building machine learning models.
We introduce a robust, efficient, and interpretable methodology based on nonlinear manifold learning to detect anomalies in unsupervised settings.
arXiv Detail & Related papers (2023-06-15T18:48:10Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Graph Embedding via High Dimensional Model Representation for
Hyperspectral Images [9.228929858529678]
Learning the manifold structure of remote sensing images is of paramount relevance for modeling and understanding processes.
Manor learning methods have shown excellent performance to deal with hyperspectral image (HSI) analysis.
A common assumption to deal with the problem is that the transformation between the high-dimensional input space and the (typically low) latent space is linear.
The proposed method is compared to manifold learning methods along with its linear counterparts and achieves promising performance in terms of classification accuracy of a representative set of hyperspectral images.
arXiv Detail & Related papers (2021-11-29T16:42:15Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
Data anomalies are ubiquitous in real world datasets, and can have an adverse impact on machine learning (ML) systems.
We propose a novel model-based anomaly detection method, that we call Out-of-Bag anomaly detection.
We show our method can improve the accuracy and reliability of an ML system as data pre-processing step via a case study on home valuation.
arXiv Detail & Related papers (2020-09-20T06:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.