Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe
- URL: http://arxiv.org/abs/2203.05748v1
- Date: Fri, 11 Mar 2022 04:29:21 GMT
- Title: Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe
- Authors: Aziz Karasahin, Robert M. Pettit, Nils von den Driesch, Marvin Marco
Jansen, Alexander Pawlis, Edo Waks
- Abstract summary: We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
- Score: 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Defects in wide-bandgap semiconductors are promising qubit candidates for
quantum communication and computation. Epitaxially grown II-VI semiconductors
are particularly promising host materials due to their direct bandgap and
potential for isotopic purification to a spin-zero nuclear background. Here, we
show a new type of single photon emitter with potential electron spin qubit
based on Cl impurities in ZnSe. We utilize a quantum well to increase the
binding energies of donor emission and confirm single photon emission with
short radiative lifetimes of 192 ps. Furthermore, we verify that the ground
state of the Cl donor complex contains a single electron by observing
two-electron satellite emission, leaving the electron in higher orbital states.
We also characterize the Zeeman splitting of the exciton transition by
performing polarization-resolved magnetic spectroscopy on single emitters. Our
results suggest single Cl impurities are suitable as single photon source with
potential photonic interface.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Quantum Emitters in Aluminum Nitride Induced by Zirconium Ion
Implantation [70.64959705888512]
This study investigates aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics.
We conduct a comprehensive study of the creation and photophysical properties of single-photon emitters in AlN utilizing Zirconium (Zr) and Krypton (Kr) heavy ion implantation.
With the 532 nm excitation wavelength, we found that single-photon emitters induced by ion implantation are primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions.
arXiv Detail & Related papers (2024-01-26T03:50:33Z) - Cavity-enhanced single photon emission from a single impurity-bound
exciton [42.2225785045544]
Impurity-bound excitons inSe quantum wells are bright single photon emitters.
We demonstrate cavity-enhanced emission from a single impurity-bound exciton in aSe quantum well.
arXiv Detail & Related papers (2023-09-04T18:06:54Z) - Controlling single rare earth ion emission in an electro-optical
nanocavity [0.09786690381850356]
Rare earth emitters enable critical quantum resources including spin qubits, single photon sources, and quantum memories.
Here, we demonstrate direct control of single ion emission by embedding erbium dopants in an electro-optically active photonic crystal cavity.
Dynamic control of emission rate is realized by leveraging electro-optic tuning of resonance frequency.
arXiv Detail & Related papers (2022-11-22T18:08:44Z) - Correlations between cascaded photons from spatially localized
biexcitons in ZnSe [55.41644538483948]
We demonstrate a radiative cascade from the decay of a biexciton at an impurity-atom complex in aSe quantum well.
Our result establishes impurity atoms inSe as a potential platform for photonic quantum technologies using radiative cascades.
arXiv Detail & Related papers (2022-03-11T23:15:37Z) - Photoneutralization of charges in GaAs quantum dot based entangled
photon emitters [0.923921787880063]
We show that emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
Our finding demonstrates that the emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
arXiv Detail & Related papers (2021-10-05T20:25:52Z) - Double-Pulse Generation of Indistinguishable Single Photons with
Optically Controlled Polarization [11.085249064902994]
We show a method to generate indistinguishable single photons with optically controlled polarization by two laser pulses off-resonant with neutral exciton states.
Our work makes an important step towards indistinguishable single-photon sources with near-unity collection efficiency.
arXiv Detail & Related papers (2021-09-20T03:07:18Z) - Defect polaritons from first principles [0.0]
We investigate three defect types -- CHB, CB-CB, and CB-VN -- in monolayer hexagonal boron nitride (hBN)
For all defect systems, we show that the polaritonic splitting that shifts the absorption energy of the lower polariton is much higher than can be expected from a Jaynes-Cummings interaction.
We find that initially localized electronic transition densities can become delocalized across the entire material under strong light-matter coupling.
arXiv Detail & Related papers (2021-05-04T18:00:00Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.