Quantum Emitters in Aluminum Nitride Induced by Zirconium Ion
Implantation
- URL: http://arxiv.org/abs/2401.14631v1
- Date: Fri, 26 Jan 2024 03:50:33 GMT
- Title: Quantum Emitters in Aluminum Nitride Induced by Zirconium Ion
Implantation
- Authors: Alexander Senichev, Zachariah O. Martin, Yongqiang Wang, Owen M.
Matthiessen, Alexei Lagutchev, Han Htoon, Alexandra Boltasseva, Vladimir M.
Shalaev
- Abstract summary: This study investigates aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics.
We conduct a comprehensive study of the creation and photophysical properties of single-photon emitters in AlN utilizing Zirconium (Zr) and Krypton (Kr) heavy ion implantation.
With the 532 nm excitation wavelength, we found that single-photon emitters induced by ion implantation are primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions.
- Score: 70.64959705888512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of solid-state single-photon sources with foundry-compatible
photonic platforms is crucial for practical and scalable quantum photonic
applications. This study investigates aluminum nitride (AlN) as a material with
properties highly suitable for integrated on-chip photonics specifically due to
AlN capacity to host defect-center related single-photon emitters. We conduct a
comprehensive study of the creation and photophysical properties of
single-photon emitters in AlN utilizing Zirconium (Zr) and Krypton (Kr) heavy
ion implantation and thermal annealing techniques. Guided by theoretical
predictions, we assess the potential of Zr ions to create optically addressable
spin-defects and employ Kr ions as an alternative approach that targets lattice
defects without inducing chemical doping effects. With the 532 nm excitation
wavelength, we found that single-photon emitters induced by ion implantation
are primarily associated with vacancy-type defects in the AlN lattice for both
Zr and Kr ions. The emitter density increases with the ion fluence, and there
is an optimal value for the high density of emitters with low AlN background
fluorescence. Additionally, under shorter excitation wavelength of 405 nm,
Zr-implanted AlN exhibits isolated point-like emitters, which can be related to
Zr-based defect complexes. This study provides important insights into the
formation and properties of single-photon emitters in aluminum nitride induced
by heavy ion implantation, contributing to the advancement of the aluminum
nitride platform for on-chip quantum photonic applications.
Related papers
- Single photon emitters in monolayer semiconductors coupled to transition metal dichalcogenide nanoantennas on silica and gold substrates [49.87501877273686]
Transition metal dichalcogenide (TMD) single photon emitters offer numerous advantages to quantum information applications.
Traditional materials used for the fabrication of nanoresonators, such as silicon or gallium phosphide (GaP), often require a high refractive index substrate.
Here, we use nanoantennas (NAs) fabricated from multilayer TMDs, which allow complete flexibility with the choice of substrate.
arXiv Detail & Related papers (2024-08-02T07:44:29Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Nanocavity-mediated Purcell enhancement of Er in TiO$_2$ thin films
grown via atomic layer deposition [0.9822586588159397]
Trivalent erbium (Er$3+$) embedded as an atomic defect in the solid-state shows promise as a spin-based quantum memory for quantum communication.
We present Er-doped titanium dioxide thin film growth on silicon substrates using a foundry-scalable atomic layer deposition process.
Our findings demonstrate a low-temperature, non-destructive, and substrate-independent process for integrating Er-doped materials with silicon photonics.
arXiv Detail & Related papers (2023-09-23T22:41:56Z) - Cavity-enhanced single photon emission from a single impurity-bound
exciton [42.2225785045544]
Impurity-bound excitons inSe quantum wells are bright single photon emitters.
We demonstrate cavity-enhanced emission from a single impurity-bound exciton in aSe quantum well.
arXiv Detail & Related papers (2023-09-04T18:06:54Z) - Highly photostable Zn-treated halide perovskite nanocrystals for
efficient single photon generation [0.0]
We fabricate and characterize in a systematic manner colloidal-treated $CsPbBr_3$ NCs obtained through $Zn2+$ ion doping at the Pb-site.
These doped NCs exhibit high single-photon purity, reduced blinking on a sub-millisecond timescale and stability of the bright state for excitation powers well above the saturation levels.
arXiv Detail & Related papers (2023-07-29T11:23:30Z) - Localized creation of yellow single photon emitting carbon complexes in
hexagonal boron nitride [27.965277627489417]
Single photon emitters in solid-state crystals have received a lot of attention as building blocks for numerous quantum technology applications.
Here, we demonstrate the localized fabrication of hBN emitter arrays by electron beam irradiation.
Our measurements of optically detected magnetic resonance have not revealed any addressable spin states.
arXiv Detail & Related papers (2022-08-29T10:44:12Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.