PD-Flow: A Point Cloud Denoising Framework with Normalizing Flows
- URL: http://arxiv.org/abs/2203.05940v1
- Date: Fri, 11 Mar 2022 14:17:58 GMT
- Title: PD-Flow: A Point Cloud Denoising Framework with Normalizing Flows
- Authors: Aihua Mao, Zihui Du, Yu-Hui Wen, Jun Xuan, Yong-Jin Liu
- Abstract summary: Point cloud denoising aims to restore clean point clouds from raw observations corrupted by noise and outliers.
We present a novel deep learning-based denoising model, that incorporates normalizing flows and noise disentanglement techniques.
- Score: 20.382995180671205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud denoising aims to restore clean point clouds from raw
observations corrupted by noise and outliers while preserving the fine-grained
details. We present a novel deep learning-based denoising model, that
incorporates normalizing flows and noise disentanglement techniques to achieve
high denoising accuracy. Unlike existing works that extract features of point
clouds for point-wise correction, we formulate the denoising process from the
perspective of distribution learning and feature disentanglement. By
considering noisy point clouds as a joint distribution of clean points and
noise, the denoised results can be derived from disentangling the noise
counterpart from latent point representation, and the mapping between Euclidean
and latent spaces is modeled by normalizing flows. We evaluate our method on
synthesized 3D models and real-world datasets with various noise settings.
Qualitative and quantitative results show that our method outperforms previous
state-of-the-art deep learning-based approaches. %in terms of detail
preservation and distribution uniformity.
Related papers
- Point Cloud Resampling with Learnable Heat Diffusion [58.050130177241186]
We propose a learnable heat diffusion framework for point cloud resampling.
Unlike previous diffusion models with a fixed prior, the adaptive conditional prior selectively preserves geometric features of the point cloud.
arXiv Detail & Related papers (2024-11-21T13:44:18Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - CFNet: Conditional Filter Learning with Dynamic Noise Estimation for
Real Image Denoising [37.29552796977652]
This paper considers real noise approximated by heteroscedastic Gaussian/Poisson Gaussian distributions with in-camera signal processing pipelines.
We propose a novel conditional filter in which the optimal kernels for different feature positions can be adaptively inferred by local features from the image and the noise map.
Also, we bring the thought that alternatively performs noise estimation and non-blind denoising into CNN structure, which continuously updates noise prior to guide the iterative feature denoising.
arXiv Detail & Related papers (2022-11-26T14:28:54Z) - Point Cloud Denoising via Momentum Ascent in Gradient Fields [72.93429911044903]
gradient-based method was proposed to estimate the gradient fields from the noisy point clouds using neural networks.
We develop a momentum gradient ascent method that leverages the information of previous iterations in determining the trajectories of the points.
Experiments demonstrate that the proposed method outperforms state-of-the-art approaches with a variety of point clouds, noise types, and noise levels.
arXiv Detail & Related papers (2022-02-21T10:21:40Z) - Multi-Contextual Design of Convolutional Neural Network for Steganalysis [8.631228373008478]
It is observed that recent steganographic embedding does not always restrict their embedding in the high-frequency zone; instead, they distribute it as per embedding policy.
In this work, unlike the conventional approaches, the proposed model first extracts the noise residual using learned denoising kernels to boost the signal-to-noise ratio.
After preprocessing, the sparse noise residuals are fed to a novel Multi-Contextual Convolutional Neural Network (M-CNET) that uses heterogeneous context size to learn the sparse and low-amplitude representation of noise residuals.
arXiv Detail & Related papers (2021-06-19T05:38:52Z) - Differentiable Manifold Reconstruction for Point Cloud Denoising [23.33652755967715]
3D point clouds are often perturbed by noise due to the inherent limitation of acquisition equipments.
We propose to learn the underlying manifold of a noisy point cloud from differentiably subsampled points.
We show that our method significantly outperforms state-of-the-art denoising methods under both synthetic noise and real world noise.
arXiv Detail & Related papers (2020-07-27T13:31:41Z) - Learning Graph-Convolutional Representations for Point Cloud Denoising [31.557988478764997]
We propose a deep neural network that can deal with the permutation-invariance problem encountered by learning-based point cloud processing methods.
The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs.
It is especially robust both at high noise levels and in presence of structured noise such as the one encountered in real LiDAR scans.
arXiv Detail & Related papers (2020-07-06T08:11:28Z) - Simultaneous Denoising and Dereverberation Using Deep Embedding Features [64.58693911070228]
We propose a joint training method for simultaneous speech denoising and dereverberation using deep embedding features.
At the denoising stage, the DC network is leveraged to extract noise-free deep embedding features.
At the dereverberation stage, instead of using the unsupervised K-means clustering algorithm, another neural network is utilized to estimate the anechoic speech.
arXiv Detail & Related papers (2020-04-06T06:34:01Z) - Non-Local Part-Aware Point Cloud Denoising [55.50360085086123]
This paper presents a novel non-local part-aware deep neural network to denoise point clouds.
We design the non-local learning unit (NLU) customized with a graph attention module to adaptively capture non-local semantically-related features.
To enhance the denoising performance, we cascade a series of NLUs to progressively distill the noise features from the noisy inputs.
arXiv Detail & Related papers (2020-03-14T13:51:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.