Learning Graph-Convolutional Representations for Point Cloud Denoising
- URL: http://arxiv.org/abs/2007.02578v1
- Date: Mon, 6 Jul 2020 08:11:28 GMT
- Title: Learning Graph-Convolutional Representations for Point Cloud Denoising
- Authors: Francesca Pistilli, Giulia Fracastoro, Diego Valsesia, Enrico Magli
- Abstract summary: We propose a deep neural network that can deal with the permutation-invariance problem encountered by learning-based point cloud processing methods.
The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs.
It is especially robust both at high noise levels and in presence of structured noise such as the one encountered in real LiDAR scans.
- Score: 31.557988478764997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point clouds are an increasingly relevant data type but they are often
corrupted by noise. We propose a deep neural network based on
graph-convolutional layers that can elegantly deal with the
permutation-invariance problem encountered by learning-based point cloud
processing methods. The network is fully-convolutional and can build complex
hierarchies of features by dynamically constructing neighborhood graphs from
similarity among the high-dimensional feature representations of the points.
When coupled with a loss promoting proximity to the ideal surface, the proposed
approach significantly outperforms state-of-the-art methods on a variety of
metrics. In particular, it is able to improve in terms of Chamfer measure and
of quality of the surface normals that can be estimated from the denoised data.
We also show that it is especially robust both at high noise levels and in
presence of structured noise such as the one encountered in real LiDAR scans.
Related papers
- Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement [19.575833741231953]
We use the KNN method to determine the neighborhoods of raw surface points.
A conditional probability model is adaptive to local geometry, leading to significant rate reduction.
We incorporate an implicit neural representation into the refinement layer, allowing the decoder to sample points on the underlying surface at arbitrary densities.
arXiv Detail & Related papers (2024-08-06T05:24:06Z) - Noise-Resilient Unsupervised Graph Representation Learning via Multi-Hop Feature Quality Estimation [53.91958614666386]
Unsupervised graph representation learning (UGRL) based on graph neural networks (GNNs)
We propose a novel UGRL method based on Multi-hop feature Quality Estimation (MQE)
arXiv Detail & Related papers (2024-07-29T12:24:28Z) - Mesh Denoising Transformer [104.5404564075393]
Mesh denoising is aimed at removing noise from input meshes while preserving their feature structures.
SurfaceFormer is a pioneering Transformer-based mesh denoising framework.
New representation known as Local Surface Descriptor captures local geometric intricacies.
Denoising Transformer module receives the multimodal information and achieves efficient global feature aggregation.
arXiv Detail & Related papers (2024-05-10T15:27:43Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - GraphFit: Learning Multi-scale Graph-Convolutional Representation for
Point Cloud Normal Estimation [31.40738037512243]
We propose a precise and efficient normal estimation method for unstructured 3D point clouds.
We learn graph convolutional feature representation for normal estimation, which emphasizes more local neighborhood geometry.
Our method outperforms competitors with the state-of-the-art accuracy on various benchmark datasets.
arXiv Detail & Related papers (2022-07-23T10:29:26Z) - PD-Flow: A Point Cloud Denoising Framework with Normalizing Flows [20.382995180671205]
Point cloud denoising aims to restore clean point clouds from raw observations corrupted by noise and outliers.
We present a novel deep learning-based denoising model, that incorporates normalizing flows and noise disentanglement techniques.
arXiv Detail & Related papers (2022-03-11T14:17:58Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Differentiable Manifold Reconstruction for Point Cloud Denoising [23.33652755967715]
3D point clouds are often perturbed by noise due to the inherent limitation of acquisition equipments.
We propose to learn the underlying manifold of a noisy point cloud from differentiably subsampled points.
We show that our method significantly outperforms state-of-the-art denoising methods under both synthetic noise and real world noise.
arXiv Detail & Related papers (2020-07-27T13:31:41Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.