論文の概要: Bit-Metric Decoding Rate in Multi-User MIMO Systems: Applications
- arxiv url: http://arxiv.org/abs/2203.06273v2
- Date: Tue, 15 Mar 2022 15:20:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-16 10:36:15.326575
- Title: Bit-Metric Decoding Rate in Multi-User MIMO Systems: Applications
- Title(参考訳): マルチユーザMIMOシステムにおけるビットメトリックデコードレート:応用
- Authors: K. Pavan Srinath and Jakob Hoydis
- Abstract要約: 第1部では,非線形受信機を有するMU-MIMOシステムに対するリンク適応(LA)と物理層(PHY)の抽象化に焦点を当てる。
パートIIは、任意の受信機を持つMU-MIMOシステムにおいて、LAのための新しいアルゴリズム、利用可能な検出器のリストからの動的検出器選択、PHY抽象化を開発する。
- 参考スコア(独自算出の注目度): 13.848471206858617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This is the second part of a two-part paper that focuses on link-adaptation
(LA) and physical layer (PHY) abstraction for multi-user MIMO (MU-MIMO) systems
with non-linear receivers. The first part proposes a new metric, called
bit-metric decoding rate (BMDR) for a detector, as being the equivalent of
post-equalization signal-to-interference-noise ratio (SINR) for non-linear
receivers. Since this BMDR does not have a closed form expression, a
machine-learning based approach to estimate it effectively is presented. In
this part, the concepts developed in the first part are utilized to develop
novel algorithms for LA, dynamic detector selection from a list of available
detectors, and PHY abstraction in MU-MIMO systems with arbitrary receivers.
Extensive simulation results that substantiate the efficacy of the proposed
algorithms are presented.
- Abstract(参考訳): これは、リンク適応(LA)と物理層(PHY)の非線形受信機を用いたマルチユーザMIMO(MU-MIMO)システムの抽象化に焦点を当てた2部構成の論文の第2部である。
第1部では、非線形受信機に対する非等化信号-干渉-雑音比(SINR)の等価性として、検出器に対するビットメトリック復号率(BMDR)と呼ばれる新しい計量を提案する。
このBMDRはクローズドな形式表現を持たないため,機械学習による評価手法を効果的に提案する。
この部分では、第一部で開発された概念を用いて、LAの新しいアルゴリズム、利用可能な検出器リストからの動的検出器選択、任意の受信機を持つMU-MIMOシステムのPHY抽象化を開発する。
提案アルゴリズムの有効性を実証する大規模なシミュレーション結果を示す。
関連論文リスト
- Downlink MIMO Channel Estimation from Bits: Recoverability and Algorithm [47.7091447096969]
主な課題は、ユーザ機器(UE)からの限られたフィードバックから基地局(BS)のダウンリンクチャネル状態情報(CSI)を取得することである。
本稿では、UE側で圧縮とガウスディザリングに基づく量子化戦略を採用し、BS側で最大極大推定器(MLE)を定式化する単純なフィードバックフレームワークを提案する。
このアルゴリズムは、高次高調波探索(HR)ソルバをサブルーチンとして統合するために慎重に設計されており、この難しいMLE問題に効果的に取り組む鍵であることが判明した。
論文 参考訳(メタデータ) (2024-11-25T02:15:01Z) - Deep Unfolded Simulated Bifurcation for Massive MIMO Signal Detection [7.969977930633441]
深層学習技術と量子(インスパイアされた)アルゴリズムに基づく様々な信号検出器が提案され,検出性能が向上した。
本稿では、量子インスパイアされたアルゴリズムであるシミュレート・バイフルケーション(SB)アルゴリズムに焦点を当てる。
論文 参考訳(メタデータ) (2023-06-28T14:46:55Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - Integrate Lattice-Free MMI into End-to-End Speech Recognition [87.01137882072322]
音声認識(ASR)研究において、識別基準はDNN-HMMシステムにおいて優れた性能を達成している。
このモチベーションにより、差別的基準の採用は、エンドツーエンド(E2E)のASRシステムの性能を高めることを約束している。
これまでの研究は、最小ベイズリスク(MBR、差別基準の一つ)をE2E ASRシステムに導入してきた。
本研究では,他の広く使われている識別基準であるLF-MMIをE2Eに統合する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-29T14:32:46Z) - Bit-Metric Decoding Rate in Multi-User MIMO Systems: Theory [13.848471206858617]
リンク適応(LA)は、無線通信における最も重要な側面の1つである。
LAは受信機における非等化後信号-干渉-雑音比(SINR)を計算する。
非線形受信機を持つMU-MIMOシステムでは、スフィアデコーダアルゴリズムの変種を使用するような、ポスト等化SINRの等価性は知られていない。
BMDRは任意の検出器に対する非等化後のSINRと同値である。
論文 参考訳(メタデータ) (2022-03-11T22:43:37Z) - Deep Learning-Based Active User Detection for Grant-free SCMA Systems [12.565459084483045]
グループベースのディープニューラルネットワークアクティブユーザ検出方式を2つ提案する。
スキームは非線形マッピング、すなわち多次元コードブック構造とチャネル特性を学ぶ。
オフラインで事前訓練されたモデルは、チャネル状態情報なしでアクティブなデバイスを検出することができる。
論文 参考訳(メタデータ) (2021-06-21T15:34:14Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
本稿では,1ビット計測から情報シンボルを復元する「LoRD-Net」というディープ検出器を提案する。
LoRD-Netは、関心のシグナルを回復するためのタスクベースのアーキテクチャである。
無線通信における1ビット信号回復のためのレシーバアーキテクチャの評価を行った。
論文 参考訳(メタデータ) (2021-02-05T04:26:05Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
離散レンズアレイを用いたミリ波マルチユーザマルチインプット多重出力(MU-MIMO)システムに注目が集まっている。
本研究では、DLA を用いた mmWave MU-MIMO システムのビームプリコーディング行列の共同設計について検討する。
論文 参考訳(メタデータ) (2021-01-05T03:55:04Z) - Deep Learning Based Equalizer for MIMO-OFDM Systems with Insufficient
Cyclic Prefix [11.11468231197267]
特に、信号検出性能は、キャリア間干渉(ICI)とシンボル間干渉(ISI)によって著しく損なわれている。
この問題に対処するために,最大確率検出を近似するために,深層学習に基づく等化器を提案する。
その結果,提案手法は従来の2つのベースライン方式と比較して,大幅な性能向上を実現可能であることがわかった。
論文 参考訳(メタデータ) (2020-07-23T02:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。