Image Style Transfer: from Artistic to Photorealistic
- URL: http://arxiv.org/abs/2203.06328v1
- Date: Sat, 12 Mar 2022 03:22:05 GMT
- Title: Image Style Transfer: from Artistic to Photorealistic
- Authors: Chenggui Sun and Li Bin Song
- Abstract summary: The rapid advancement of deep learning has significantly boomed the development of photorealistic style transfer.
In this review, we reviewed the development of photorealistic style transfer starting from artistic style transfer and the contribution of traditional image processing techniques on photorealistic style transfer.
- Score: 0.8528384027684192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of deep learning has significantly boomed the
development of photorealistic style transfer. In this review, we reviewed the
development of photorealistic style transfer starting from artistic style
transfer and the contribution of traditional image processing techniques on
photorealistic style transfer, including some work that had been completed in
the Multimedia lab at the University of Alberta. Many techniques were discussed
in this review. However, our focus is on VGG-based techniques, whitening and
coloring transform (WCTs) based techniques, the combination of deep learning
with traditional image processing techniques.
Related papers
- Towards Highly Realistic Artistic Style Transfer via Stable Diffusion with Step-aware and Layer-aware Prompt [12.27693060663517]
Artistic style transfer aims to transfer the learned artistic style onto an arbitrary content image, generating artistic stylized images.
We propose a novel pre-trained diffusion-based artistic style transfer method, called LSAST.
Our proposed method can generate more highly realistic artistic stylized images than the state-of-the-art artistic style transfer methods.
arXiv Detail & Related papers (2024-04-17T15:28:53Z) - ArtBank: Artistic Style Transfer with Pre-trained Diffusion Model and
Implicit Style Prompt Bank [9.99530386586636]
Artistic style transfer aims to repaint the content image with the learned artistic style.
Existing artistic style transfer methods can be divided into two categories: small model-based approaches and pre-trained large-scale model-based approaches.
We propose ArtBank, a novel artistic style transfer framework, to generate highly realistic stylized images.
arXiv Detail & Related papers (2023-12-11T05:53:40Z) - Chinese Painting Style Transfer Using Deep Generative Models [0.0]
Artistic style transfer aims to modify the style of the image while preserving its content.
We will study and leverage different state-of-the-art deep generative models for Chinese painting style transfer.
arXiv Detail & Related papers (2023-10-15T23:05:17Z) - Learning to Evaluate the Artness of AI-generated Images [64.48229009396186]
ArtScore is a metric designed to evaluate the degree to which an image resembles authentic artworks by artists.
We employ pre-trained models for photo and artwork generation, resulting in a series of mixed models.
This dataset is then employed to train a neural network that learns to estimate quantized artness levels of arbitrary images.
arXiv Detail & Related papers (2023-05-08T17:58:27Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
arXiv Detail & Related papers (2023-03-09T04:35:00Z) - QuantArt: Quantizing Image Style Transfer Towards High Visual Fidelity [94.5479418998225]
We propose a new style transfer framework called QuantArt for high visual-fidelity stylization.
Our framework achieves significantly higher visual fidelity compared with the existing style transfer methods.
arXiv Detail & Related papers (2022-12-20T17:09:53Z) - Inversion-Based Style Transfer with Diffusion Models [78.93863016223858]
Previous arbitrary example-guided artistic image generation methods often fail to control shape changes or convey elements.
We propose an inversion-based style transfer method (InST), which can efficiently and accurately learn the key information of an image.
arXiv Detail & Related papers (2022-11-23T18:44:25Z) - Interactive Style Transfer: All is Your Palette [74.06681967115594]
We propose a drawing-like interactive style transfer (IST) method, by which users can interactively create a harmonious-style image.
Our IST method can serve as a brush, dip style from anywhere, and then paint to any region of the target content image.
arXiv Detail & Related papers (2022-03-25T06:38:46Z) - Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer [103.54337984566877]
Recent studies on StyleGAN show high performance on artistic portrait generation by transfer learning with limited data.
We introduce a novel DualStyleGAN with flexible control of dual styles of the original face domain and the extended artistic portrait domain.
Experiments demonstrate the superiority of DualStyleGAN over state-of-the-art methods in high-quality portrait style transfer and flexible style control.
arXiv Detail & Related papers (2022-03-24T17:57:11Z) - LiveStyle -- An Application to Transfer Artistic Styles [0.0]
Style Transfer using Neural Networks refers to optimization techniques, where a content image and a style image are taken and blended.
This paper implements the Style Transfer using three different Neural Networks in form of an application that is accessible to the general population.
arXiv Detail & Related papers (2021-05-03T13:50:48Z) - Joint Bilateral Learning for Real-time Universal Photorealistic Style
Transfer [18.455002563426262]
Photorealistic style transfer is the task of transferring the artistic style of an image onto a content target, producing a result that is plausibly taken with a camera.
Recent approaches, based on deep neural networks, produce impressive results but are either too slow to run at practical resolutions, or still contain objectionable artifacts.
We propose a new end-to-end model for photorealistic style transfer that is both fast and inherently generates photorealistic results.
arXiv Detail & Related papers (2020-04-23T03:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.