3D-GIF: 3D-Controllable Object Generation via Implicit Factorized
Representations
- URL: http://arxiv.org/abs/2203.06457v1
- Date: Sat, 12 Mar 2022 15:23:17 GMT
- Title: 3D-GIF: 3D-Controllable Object Generation via Implicit Factorized
Representations
- Authors: Minsoo Lee, Chaeyeon Chung, Hojun Cho, Minjung Kim, Sanghun Jung,
Jaegul Choo, and Minhyuk Sung
- Abstract summary: We propose the factorized representations which are view-independent and light-disentangled, and training schemes with randomly sampled light conditions.
We demonstrate the superiority of our method by visualizing factorized representations, re-lighted images, and albedo-textured meshes.
This is the first work that extracts albedo-textured meshes with unposed 2D images without any additional labels or assumptions.
- Score: 31.095503715696722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While NeRF-based 3D-aware image generation methods enable viewpoint control,
limitations still remain to be adopted to various 3D applications. Due to their
view-dependent and light-entangled volume representation, the 3D geometry
presents unrealistic quality and the color should be re-rendered for every
desired viewpoint. To broaden the 3D applicability from 3D-aware image
generation to 3D-controllable object generation, we propose the factorized
representations which are view-independent and light-disentangled, and training
schemes with randomly sampled light conditions. We demonstrate the superiority
of our method by visualizing factorized representations, re-lighted images, and
albedo-textured meshes. In addition, we show that our approach improves the
quality of the generated geometry via visualization and quantitative
comparison. To the best of our knowledge, this is the first work that extracts
albedo-textured meshes with unposed 2D images without any additional labels or
assumptions.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - What You See is What You GAN: Rendering Every Pixel for High-Fidelity
Geometry in 3D GANs [82.3936309001633]
3D-aware Generative Adversarial Networks (GANs) have shown remarkable progress in learning to generate multi-view-consistent images and 3D geometries.
Yet, the significant memory and computational costs of dense sampling in volume rendering have forced 3D GANs to adopt patch-based training or employ low-resolution rendering with post-processing 2D super resolution.
We propose techniques to scale neural volume rendering to the much higher resolution of native 2D images, thereby resolving fine-grained 3D geometry with unprecedented detail.
arXiv Detail & Related papers (2024-01-04T18:50:38Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery.
Recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly.
We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images.
arXiv Detail & Related papers (2022-11-21T06:40:46Z) - Texturify: Generating Textures on 3D Shape Surfaces [34.726179801982646]
We propose Texturify to learn a 3D shape that predicts texture on the 3D input.
Our method does not require any 3D color supervision to learn 3D objects.
arXiv Detail & Related papers (2022-04-05T18:00:04Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
We propose a shading-guided generative implicit model that is able to learn a starkly improved shape representation.
An accurate 3D shape should also yield a realistic rendering under different lighting conditions.
Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis.
arXiv Detail & Related papers (2021-10-29T10:53:12Z) - Lifting 2D StyleGAN for 3D-Aware Face Generation [52.8152883980813]
We propose a framework, called LiftedGAN, that disentangles and lifts a pre-trained StyleGAN2 for 3D-aware face generation.
Our model is "3D-aware" in the sense that it is able to (1) disentangle the latent space of StyleGAN2 into texture, shape, viewpoint, lighting and (2) generate 3D components for synthetic images.
arXiv Detail & Related papers (2020-11-26T05:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.