DARA: Dynamics-Aware Reward Augmentation in Offline Reinforcement
Learning
- URL: http://arxiv.org/abs/2203.06662v1
- Date: Sun, 13 Mar 2022 14:30:55 GMT
- Title: DARA: Dynamics-Aware Reward Augmentation in Offline Reinforcement
Learning
- Authors: Jinxin Liu, Hongyin Zhang, Donglin Wang
- Abstract summary: offline reinforcement learning algorithms promise to be applicable in settings where a fixed dataset is available and no new experience can be acquired.
This paper formulates the offline dynamics adaptation by using (source) offline data collected from another dynamics to relax the requirement for the extensive (target) offline data.
With only modest amounts of target offline data, our performance consistently outperforms the prior offline RL methods in both simulated and real-world tasks.
- Score: 17.664027379555183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline reinforcement learning algorithms promise to be applicable in
settings where a fixed dataset is available and no new experience can be
acquired. However, such formulation is inevitably offline-data-hungry and, in
practice, collecting a large offline dataset for one specific task over one
specific environment is also costly and laborious. In this paper, we thus 1)
formulate the offline dynamics adaptation by using (source) offline data
collected from another dynamics to relax the requirement for the extensive
(target) offline data, 2) characterize the dynamics shift problem in which
prior offline methods do not scale well, and 3) derive a simple dynamics-aware
reward augmentation (DARA) framework from both model-free and model-based
offline settings. Specifically, DARA emphasizes learning from those source
transition pairs that are adaptive for the target environment and mitigates the
offline dynamics shift by characterizing state-action-next-state pairs instead
of the typical state-action distribution sketched by prior offline RL methods.
The experimental evaluation demonstrates that DARA, by augmenting rewards in
the source offline dataset, can acquire an adaptive policy for the target
environment and yet significantly reduce the requirement of target offline
data. With only modest amounts of target offline data, our performance
consistently outperforms the prior offline RL methods in both simulated and
real-world tasks.
Related papers
- Offline Reinforcement Learning from Datasets with Structured Non-Stationarity [50.35634234137108]
Current Reinforcement Learning (RL) is often limited by the large amount of data needed to learn a successful policy.
We address a novel Offline RL problem setting in which, while collecting the dataset, the transition and reward functions gradually change between episodes but stay constant within each episode.
We propose a method based on Contrastive Predictive Coding that identifies this non-stationarity in the offline dataset, accounts for it when training a policy, and predicts it during evaluation.
arXiv Detail & Related papers (2024-05-23T02:41:36Z) - Small Dataset, Big Gains: Enhancing Reinforcement Learning by Offline
Pre-Training with Model Based Augmentation [59.899714450049494]
offline pre-training can produce sub-optimal policies and lead to degraded online reinforcement learning performance.
We propose a model-based data augmentation strategy to maximize the benefits of offline reinforcement learning pre-training and reduce the scale of data needed to be effective.
arXiv Detail & Related papers (2023-12-15T14:49:41Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
offline policy learning is aimed at learning decision-making policies using existing datasets of trajectories without collecting additional data.
We argue that when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL algorithms do not substantially improve over the average return of trajectories in the dataset.
We present a realization of the sampling strategy and an algorithm that can be used as a plug-and-play module in standard offline RL algorithms.
arXiv Detail & Related papers (2023-10-06T17:58:14Z) - A Simple Unified Uncertainty-Guided Framework for Offline-to-Online
Reinforcement Learning [25.123237633748193]
offline-to-online reinforcement learning can be challenging due to constrained exploratory behavior and state-action distribution shift.
We propose a Simple Unified uNcertainty-Guided (SUNG) framework, which unifies the solution to both challenges with the tool of uncertainty.
SUNG achieves state-of-the-art online finetuning performance when combined with different offline RL methods.
arXiv Detail & Related papers (2023-06-13T05:22:26Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
We consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online.
We propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data.
arXiv Detail & Related papers (2023-03-14T08:13:21Z) - Offline Reinforcement Learning with Adaptive Behavior Regularization [1.491109220586182]
offline reinforcement learning (RL) defines a sample-efficient learning paradigm, where a policy is learned from static and previously collected datasets.
We propose a novel approach, which we refer to as adaptive behavior regularization (ABR)
ABR enables the policy to adaptively adjust its optimization objective between cloning and improving over the policy used to generate the dataset.
arXiv Detail & Related papers (2022-11-15T15:59:11Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z) - Representation Matters: Offline Pretraining for Sequential Decision
Making [27.74988221252854]
In this paper, we consider a slightly different approach to incorporating offline data into sequential decision-making.
We find that the use of pretraining with unsupervised learning objectives can dramatically improve the performance of policy learning algorithms.
arXiv Detail & Related papers (2021-02-11T02:38:12Z) - OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
Learning [107.6943868812716]
In many practical applications, the situation is reversed: an agent may have access to large amounts of undirected offline experience data, while access to the online environment is severely limited.
Our main insight is that, when presented with offline data composed of a variety of behaviors, an effective way to leverage this data is to extract a continuous space of recurring and temporally extended primitive behaviors.
In addition to benefiting offline policy optimization, we show that performing offline primitive learning in this way can also be leveraged for improving few-shot imitation learning.
arXiv Detail & Related papers (2020-10-26T14:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.