Offline Reinforcement Learning with Adaptive Behavior Regularization
- URL: http://arxiv.org/abs/2211.08251v1
- Date: Tue, 15 Nov 2022 15:59:11 GMT
- Title: Offline Reinforcement Learning with Adaptive Behavior Regularization
- Authors: Yunfan Zhou, Xijun Li, and Qingyu Qu
- Abstract summary: offline reinforcement learning (RL) defines a sample-efficient learning paradigm, where a policy is learned from static and previously collected datasets.
We propose a novel approach, which we refer to as adaptive behavior regularization (ABR)
ABR enables the policy to adaptively adjust its optimization objective between cloning and improving over the policy used to generate the dataset.
- Score: 1.491109220586182
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Offline reinforcement learning (RL) defines a sample-efficient learning
paradigm, where a policy is learned from static and previously collected
datasets without additional interaction with the environment. The major
obstacle to offline RL is the estimation error arising from evaluating the
value of out-of-distribution actions. To tackle this problem, most existing
offline RL methods attempt to acquire a policy both ``close" to the behaviors
contained in the dataset and sufficiently improved over them, which requires a
trade-off between two possibly conflicting targets. In this paper, we propose a
novel approach, which we refer to as adaptive behavior regularization (ABR), to
balance this critical trade-off. By simply utilizing a sample-based
regularization, ABR enables the policy to adaptively adjust its optimization
objective between cloning and improving over the policy used to generate the
dataset. In the evaluation on D4RL datasets, a widely adopted benchmark for
offline reinforcement learning, ABR can achieve improved or competitive
performance compared to existing state-of-the-art algorithms.
Related papers
- CDSA: Conservative Denoising Score-based Algorithm for Offline Reinforcement Learning [25.071018803326254]
Distribution shift is a major obstacle in offline reinforcement learning.
Previous conservative offline RL algorithms struggle to generalize to unseen actions.
We propose to use the gradient fields of the dataset density generated from a pre-trained offline RL algorithm to adjust the original actions.
arXiv Detail & Related papers (2024-06-11T17:59:29Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Offline Policy Evaluation for Reinforcement Learning with Adaptively Collected Data [28.445166861907495]
We develop theory for the TMIS Offline Policy Evaluation (OPE) estimator.
We derive high-probability, instance-dependent bounds on its estimation error.
We also recover minimax-optimal offline learning in the adaptive setting.
arXiv Detail & Related papers (2023-06-24T21:48:28Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
offline reinforcement learning (RL) is challenged by the distributional shift between learning policies and datasets.
We propose a simple yet effective method to boost offline RL algorithms based on the observation that resampling a dataset keeps the distribution support unchanged.
We dub our method ReD (Return-based Data Rebalance), which can be implemented with less than 10 lines of code change and adds negligible running time.
arXiv Detail & Related papers (2022-10-17T16:34:01Z) - Curriculum Offline Imitation Learning [72.1015201041391]
offline reinforcement learning tasks require the agent to learn from a pre-collected dataset with no further interactions with the environment.
We propose textitCurriculum Offline Learning (COIL), which utilizes an experience picking strategy for imitating from adaptive neighboring policies with a higher return.
On continuous control benchmarks, we compare COIL against both imitation-based and RL-based methods, showing that it not only avoids just learning a mediocre behavior on mixed datasets but is also even competitive with state-of-the-art offline RL methods.
arXiv Detail & Related papers (2021-11-03T08:02:48Z) - BRAC+: Improved Behavior Regularized Actor Critic for Offline
Reinforcement Learning [14.432131909590824]
Offline Reinforcement Learning aims to train effective policies using previously collected datasets.
Standard off-policy RL algorithms are prone to overestimations of the values of out-of-distribution (less explored) actions.
We improve the behavior regularized offline reinforcement learning and propose BRAC+.
arXiv Detail & Related papers (2021-10-02T23:55:49Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.