論文の概要: Cross-View-Prediction: Exploring Contrastive Feature for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2203.07000v2
- Date: Wed, 04 Dec 2024 17:11:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:05:12.797572
- Title: Cross-View-Prediction: Exploring Contrastive Feature for Hyperspectral Image Classification
- Title(参考訳): Cross-View-Prediction:ハイパースペクトル画像分類におけるコントラスト特性の探索
- Authors: Anyu Zhang, Haotian Wu, Zeyu Cao,
- Abstract要約: 本稿では,ハイパースペクトル画像分類のための自己教師付き特徴学習手法を提案する。
本手法は,クロス表現学習手法を用いて,生のハイパースペクトル画像の2つの異なるビューを構築することを試みる。
そして、コントラスト学習法により、生成したビューに対して意味論的に一貫した表現を学習する。
- 参考スコア(独自算出の注目度): 2.7289332147917835
- License:
- Abstract: This paper presents a self-supervised feature learning method for hyperspectral image classification. Our method tries to construct two different views of the raw hyperspectral image through a cross-representation learning method. And then to learn semantically consistent representation over the created views by contrastive learning method. Specifically, four cross-channel-prediction based augmentation methods are naturally designed to utilize the high dimension characteristic of hyperspectral data for the view construction. And the better representative features are learned by maximizing mutual information and minimizing conditional entropy across different views from our contrastive network. This 'Cross-View-Predicton' style is straightforward and gets the state-of-the-art performance of unsupervised classification with a simple SVM classifier.
- Abstract(参考訳): 本稿では,ハイパースペクトル画像分類のための自己教師付き特徴学習手法を提案する。
本手法は, クロス表現学習手法を用いて, 生のハイパースペクトル画像の2つの異なるビューを構築することを試みる。
そして、コントラスト学習法により、生成したビューに対して意味論的に一貫した表現を学習する。
具体的には,高スペクトルデータの高次元特性をビュー構築に利用するために,チャネル横断予測に基づく4つの拡張手法を自然に設計する。
そして, 相互情報の最大化と, コントラストネットワークからの異なる視点における条件エントロピーの最小化により, より優れた代表的特徴を学習する。
この 'Cross-View-Predicton' スタイルは単純で、単純なSVM分類器による教師なし分類の最先端性能を得る。
関連論文リスト
- LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Self-supervised Contrastive Learning for Cross-domain Hyperspectral
Image Representation [26.610588734000316]
本稿では,アノテートが本質的に困難であるハイパースペクトル画像に適した自己教師型学習フレームワークを提案する。
提案するフレームワークアーキテクチャは、クロスドメインCNNを利用して、異なるハイパースペクトル画像から表現を学習する。
実験結果は、スクラッチや他の移動学習法から学習したモデルに対して、提案した自己教師型表現の利点を示す。
論文 参考訳(メタデータ) (2022-02-08T16:16:45Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
セマンティックマッチングのためのマルチレベルコントラスト学習手法を提案する。
画像レベルのコントラスト学習は、畳み込み特徴が類似したオブジェクト間の対応を見出すための鍵となる要素であることを示す。
論文 参考訳(メタデータ) (2021-09-22T18:34:14Z) - Maximizing Mutual Information Across Feature and Topology Views for
Learning Graph Representations [25.756202627564505]
特徴とトポロジーの視点から相互の情報を活用することで,新たなアプローチを提案する。
提案手法は,教師なし表現と線形評価プロトコルにより,同等あるいはそれ以上の性能を達成できる。
論文 参考訳(メタデータ) (2021-05-14T08:49:40Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
分類に欠かせないと思われる特徴を視覚化することは有利である。
既存の可視化手法は,背景特徴と前景特徴の両方からなる高信頼画像を生成する。
本研究では,あるタスクにおいて最も重要であると考えられる識別的特徴を可視化するための,サリエンシ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-31T06:11:06Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z) - Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments [57.33699905852397]
ペア比較の計算を必要とせず,コントラスト的手法を生かしたオンラインアルゴリズムSwaVを提案する。
本手法では,クラスタ割り当て間の一貫性を保ちながら,同時にデータをクラスタ化する。
我々の方法は大規模で小さなバッチで訓練でき、無制限のデータにスケールできる。
論文 参考訳(メタデータ) (2020-06-17T14:00:42Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。