論文の概要: Learning from Attacks: Attacking Variational Autoencoder for Improving
Image Classification
- arxiv url: http://arxiv.org/abs/2203.07027v1
- Date: Fri, 11 Mar 2022 08:48:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-15 14:05:08.322590
- Title: Learning from Attacks: Attacking Variational Autoencoder for Improving
Image Classification
- Title(参考訳): 攻撃からの学習:画像分類を改善する変分オートエンコーダの攻撃
- Authors: Jianzhang Zheng, Fan Yang, Hao Shen, Xuan Tang, Mingsong Chen, Liang
Song, Xian Wei
- Abstract要約: 敵対的攻撃はディープニューラルネットワーク(DNN)の堅牢性に対する脅威と見なされることが多い。
この研究は、異なる視点から敵の攻撃を分析する。つまり、敵の例は、予測に有用な暗黙の情報を含んでいる。
データ自己表現とタスク固有の予測にDNNの利点を利用するアルゴリズムフレームワークを提案する。
- 参考スコア(独自算出の注目度): 17.881134865491063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks are often considered as threats to the robustness of Deep
Neural Networks (DNNs). Various defending techniques have been developed to
mitigate the potential negative impact of adversarial attacks against task
predictions. This work analyzes adversarial attacks from a different
perspective. Namely, adversarial examples contain implicit information that is
useful to the predictions i.e., image classification, and treat the adversarial
attacks against DNNs for data self-expression as extracted abstract
representations that are capable of facilitating specific learning tasks. We
propose an algorithmic framework that leverages the advantages of the DNNs for
data self-expression and task-specific predictions, to improve image
classification. The framework jointly learns a DNN for attacking Variational
Autoencoder (VAE) networks and a DNN for classification, coined as Attacking
VAE for Improve Classification (AVIC). The experiment results show that AVIC
can achieve higher accuracy on standard datasets compared to the training with
clean examples and the traditional adversarial training.
- Abstract(参考訳): 敵対的攻撃はディープニューラルネットワーク(DNN)の堅牢性に対する脅威とみなされることが多い。
タスク予測に対する敵攻撃の潜在的な負の影響を軽減するために、様々な防御技術が開発されている。
この研究は、異なる観点から敵の攻撃を分析する。
すなわち、敵対的な例としては、予測に有用な暗黙的な情報、すなわち画像分類、データ自己表現のためのDNNに対する敵対的な攻撃を、特定の学習タスクを円滑に行うことができる抽出抽象表現として扱う。
画像分類を改善するために,データ自己表現とタスク固有予測にDNNの利点を利用するアルゴリズムフレームワークを提案する。
このフレームワークは、変分オートコーダ(VAE)ネットワークを攻撃するためのDNNと分類のためのDNNを共同で学習する。
実験の結果, AVICは, クリーンな例によるトレーニングや従来の逆行訓練と比較して, 標準データセットの精度が高いことがわかった。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and
Boosting Segmentation Robustness [63.726895965125145]
ディープニューラルネットワークに基づく画像分類は、敵の摂動に弱い。
本研究では,SegPGDと呼ばれる効果的かつ効率的なセグメンテーション攻撃手法を提案する。
SegPGDはより効果的な敵の例を生成することができるため、SegPGDを用いた敵の訓練はセグメントモデルの堅牢性を高めることができる。
論文 参考訳(メタデータ) (2022-07-25T17:56:54Z) - Improved and Interpretable Defense to Transferred Adversarial Examples
by Jacobian Norm with Selective Input Gradient Regularization [31.516568778193157]
ディープニューラルネットワーク(DNN)の堅牢性を改善するために、AT(Adversarial Training)がよく用いられる。
本研究では,ジャコビアンノルムと選択的入力勾配正規化(J-SIGR)に基づくアプローチを提案する。
実験により、提案したJ-SIGRは、転送された敵攻撃に対するロバスト性を向上し、ニューラルネットワークからの予測が容易に解釈できることが示されている。
論文 参考訳(メタデータ) (2022-07-09T01:06:41Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - A Neuro-Inspired Autoencoding Defense Against Adversarial Perturbations [11.334887948796611]
ディープニューラルネットワーク(DNN)は敵の攻撃に対して脆弱である。
現在の最も効果的な防御策は、敵に摂動された例を使ってネットワークを訓練することである。
本稿では,神経に誘発される防御機構について検討する。
論文 参考訳(メタデータ) (2020-11-21T21:03:08Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Towards Class-Oriented Poisoning Attacks Against Neural Networks [1.14219428942199]
機械学習システムに対する攻撃は、トレーニングデータセットに悪意のあるサンプルを意図的に注入することで、モデルのパフォーマンスを損なう。
そこで本研究では, 破損したモデルに対して, 2つの特定の予測を強制的に行うクラス指向中毒攻撃を提案する。
逆効果の最大化と、有毒なデータ生成の計算複雑性の低減を図るため、勾配に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-31T19:27:37Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Class-Aware Domain Adaptation for Improving Adversarial Robustness [27.24720754239852]
学習データに敵の例を注入することにより,ネットワークを訓練するための敵の訓練が提案されている。
そこで本研究では,対人防御のための新しいクラスアウェアドメイン適応法を提案する。
論文 参考訳(メタデータ) (2020-05-10T03:45:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。