LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network
- URL: http://arxiv.org/abs/2203.07186v1
- Date: Mon, 14 Mar 2022 15:25:42 GMT
- Title: LiDAR-based 4D Panoptic Segmentation via Dynamic Shifting Network
- Authors: Fangzhou Hong, Hui Zhou, Xinge Zhu, Hongsheng Li, Ziwei Liu
- Abstract summary: We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods in both tasks.
We extend DS-Net to 4D panoptic LiDAR segmentation by the temporally unified instance clustering on aligned LiDAR frames.
- Score: 56.71765153629892
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the rapid advances of autonomous driving, it becomes critical to equip
its sensing system with more holistic 3D perception. However, existing works
focus on parsing either the objects (e.g. cars and pedestrians) or scenes (e.g.
trees and buildings) from the LiDAR sensor. In this work, we address the task
of LiDAR-based panoptic segmentation, which aims to parse both objects and
scenes in a unified manner. As one of the first endeavors towards this new
challenging task, we propose the Dynamic Shifting Network (DS-Net), which
serves as an effective panoptic segmentation framework in the point cloud
realm. In particular, DS-Net has three appealing properties: 1) Strong backbone
design. DS-Net adopts the cylinder convolution that is specifically designed
for LiDAR point clouds. 2) Dynamic Shifting for complex point distributions. We
observe that commonly-used clustering algorithms are incapable of handling
complex autonomous driving scenes with non-uniform point cloud distributions
and varying instance sizes. Thus, we present an efficient learnable clustering
module, dynamic shifting, which adapts kernel functions on the fly for
different instances. 3) Extension to 4D prediction. Furthermore, we extend
DS-Net to 4D panoptic LiDAR segmentation by the temporally unified instance
clustering on aligned LiDAR frames. To comprehensively evaluate the performance
of LiDAR-based panoptic segmentation, we construct and curate benchmarks from
two large-scale autonomous driving LiDAR datasets, SemanticKITTI and nuScenes.
Extensive experiments demonstrate that our proposed DS-Net achieves superior
accuracies over current state-of-the-art methods in both tasks. Notably, in the
single frame version of the task, we outperform the SOTA method by 1.8% in
terms of the PQ metric. In the 4D version of the task, we surpass 2nd place by
5.4% in terms of the LSTQ metric.
Related papers
- LiDAR-BEVMTN: Real-Time LiDAR Bird's-Eye View Multi-Task Perception
Network for Autonomous Driving [7.137567622606353]
We present a real-time multi-task convolutional neural network for LiDAR-based object detection, semantics, and motion segmentation.
We propose a novel Semantic Weighting and Guidance (SWAG) module to transfer semantic features for improved object detection selectively.
We achieve state-of-the-art results for two tasks, semantic and motion segmentation, and close to state-of-the-art performance for 3D object detection.
arXiv Detail & Related papers (2023-07-17T21:22:17Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
3D single object tracking in LiDAR point clouds (LiDAR SOT) plays a crucial role in autonomous driving.
Current approaches all follow the Siamese paradigm based on appearance matching.
We introduce a motion-centric paradigm to handle LiDAR SOT from a new perspective.
arXiv Detail & Related papers (2023-03-21T17:28:44Z) - LWSIS: LiDAR-guided Weakly Supervised Instance Segmentation for
Autonomous Driving [34.119642131912485]
We present a more artful framework, LiDAR-guided Weakly Supervised Instance (LWSIS)
LWSIS uses the off-the-shelf 3D data, i.e., Point Cloud, together with the 3D boxes, as natural weak supervisions for training the 2D image instance segmentation models.
Our LWSIS not only exploits the complementary information in multimodal data during training, but also significantly reduces the cost of the dense 2D masks.
arXiv Detail & Related papers (2022-12-07T08:08:01Z) - Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving
Object Segmentation [23.666607237164186]
We propose a novel deep neural network exploiting both spatial-temporal information and different representation modalities of LiDAR scans to improve LiDAR-MOS performance.
Specifically, we first use a range image-based dual-branch structure to separately deal with spatial and temporal information.
We also use a point refinement module via 3D sparse convolution to fuse the information from both LiDAR range image and point cloud representations.
arXiv Detail & Related papers (2022-07-05T17:59:17Z) - PillarGrid: Deep Learning-based Cooperative Perception for 3D Object
Detection from Onboard-Roadside LiDAR [15.195933965761645]
We propose textitPillarGrid, a novel cooperative perception method fusing information from multiple 3D LiDARs.
PillarGrid consists of four main phases: 1) cooperative preprocessing of point clouds, 2) pillar-wise voxelization and feature extraction, 3) grid-wise deep fusion of features from multiple sensors, and 4) convolutional neural network (CNN)-based augmented 3D object detection.
Extensive experimentation shows that PillarGrid outperforms the SOTA single-LiDAR-based 3D object detection methods with respect to both accuracy and range by a large margin.
arXiv Detail & Related papers (2022-03-12T02:28:41Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - LiDAR-based Panoptic Segmentation via Dynamic Shifting Network [56.71765153629892]
LiDAR-based panoptic segmentation aims to parse both objects and scenes in a unified manner.
We propose the Dynamic Shifting Network (DS-Net), which serves as an effective panoptic segmentation framework in the point cloud realm.
Our proposed DS-Net achieves superior accuracies over current state-of-the-art methods.
arXiv Detail & Related papers (2020-11-24T08:44:46Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR
Segmentation [81.02742110604161]
State-of-the-art methods for large-scale driving-scene LiDAR segmentation often project the point clouds to 2D space and then process them via 2D convolution.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pat-tern.
Our method achieves the 1st place in the leaderboard of Semantic KITTI and outperforms existing methods on nuScenes with a noticeable margin, about 4%.
arXiv Detail & Related papers (2020-11-19T18:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.