SATr: Slice Attention with Transformer for Universal Lesion Detection
- URL: http://arxiv.org/abs/2203.07373v1
- Date: Sun, 13 Mar 2022 03:37:27 GMT
- Title: SATr: Slice Attention with Transformer for Universal Lesion Detection
- Authors: Han Li, Long Chen, Hu Han, S. Kevin Zhou
- Abstract summary: Universal Lesion Detection (ULD) in computed tomography plays an essential role in computer-aided diagnosis.
We propose a novel Slice Attention Transformer (SATr) block which can be easily plugged into convolution-based ULD backbones.
Experiments with five state-of-the-art methods show that the proposed SATr block can provide an almost free boost to lesion detection accuracy.
- Score: 39.90420943500884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal Lesion Detection (ULD) in computed tomography plays an essential
role in computer-aided diagnosis. Promising ULD results have been reported by
multi-slice-input detection approaches which model 3D context from multiple
adjacent CT slices, but such methods still experience difficulty in obtaining a
global representation among different slices and within each individual slice
since they only use convolution-based fusion operations. In this paper, we
propose a novel Slice Attention Transformer (SATr) block which can be easily
plugged into convolution-based ULD backbones to form hybrid network structures.
Such newly formed hybrid backbones can better model long-distance feature
dependency via the cascaded self-attention modules in the Transformer block
while still holding a strong power of modeling local features with the
convolutional operations in the original backbone. Experiments with five
state-of-the-art methods show that the proposed SATr block can provide an
almost free boost to lesion detection accuracy without extra hyperparameters or
special network designs.
Related papers
- Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions.
We propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder.
A correlation-driven loss is proposed for low-frequency feature and high-frequency feature decomposition based on embedded information.
arXiv Detail & Related papers (2024-02-04T14:12:51Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Skin Lesion Segmentation Improved by Transformer-based Networks with
Inter-scale Dependency Modeling [0.0]
Melanoma is a dangerous type of skin cancer resulting from abnormal skin cell growth.
The symmetrical U-Net model's reliance on convolutional operations hinders its ability to capture long-range dependencies.
Several Transformer-based U-Net topologies have recently been created to overcome this limitation.
arXiv Detail & Related papers (2023-10-20T15:53:51Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
We propose a novel view-disentangled transformer to enhance the extraction of MRI features for more accurate tumour detection.
First, the proposed transformer harvests long-range correlation among different positions in a 3D brain scan.
Second, the transformer models a stack of slice features as multiple 2D views and enhance these features view-by-view.
Third, we deploy the proposed transformer module in a transformer backbone, which can effectively detect the 2D regions surrounding brain lesions.
arXiv Detail & Related papers (2022-09-20T11:58:23Z) - Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer
for CT Scans [2.3682456328966115]
We propose a novel, effective, two-step-wise approach to tickle this issue for COVID-19 symptom classification thoroughly.
First, the semantic feature embedding of each slice for a CT scan is extracted by conventional backbone networks.
Then, we proposed a long short-term memory (LSTM) and Transformer-based sub-network to deal with temporal feature learning.
arXiv Detail & Related papers (2022-07-04T16:59:05Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
Recently, DETR pioneered the solution vision tasks with transformers, it directly translates the image feature map into the object result.
Recent transformer-based image recognition model andTT show consistent efficiency gain.
arXiv Detail & Related papers (2021-09-15T01:10:30Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.