Vision Transformer for Intracranial Hemorrhage Classification in CT Scans Using an Entropy-Aware Fuzzy Integral Strategy for Adaptive Scan-Level Decision Fusion
- URL: http://arxiv.org/abs/2503.08609v1
- Date: Tue, 11 Mar 2025 16:47:32 GMT
- Title: Vision Transformer for Intracranial Hemorrhage Classification in CT Scans Using an Entropy-Aware Fuzzy Integral Strategy for Adaptive Scan-Level Decision Fusion
- Authors: Mehdi Hosseini Chagahi, Niloufar Delfan, Behzad Moshiri, Md. Jalil Piran, Jaber Hatam Parikhan,
- Abstract summary: Intracranial hemorrhage (ICH) is a critical medical emergency caused by the rupture of cerebral blood vessels, leading to internal bleeding within the skull.<n>We propose an advanced pyramid vision transformer (PVT)-based model, leveraging its hierarchical attention mechanisms to capture both local and global spatial dependencies in brain CT scans.
- Score: 5.486205584465161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Intracranial hemorrhage (ICH) is a critical medical emergency caused by the rupture of cerebral blood vessels, leading to internal bleeding within the skull. Accurate and timely classification of hemorrhage subtypes is essential for effective clinical decision-making. To address this challenge, we propose an advanced pyramid vision transformer (PVT)-based model, leveraging its hierarchical attention mechanisms to capture both local and global spatial dependencies in brain CT scans. Instead of processing all extracted features indiscriminately, A SHAP-based feature selection method is employed to identify the most discriminative components, which are then used as a latent feature space to train a boosting neural network, reducing computational complexity. We introduce an entropy-aware aggregation strategy along with a fuzzy integral operator to fuse information across multiple CT slices, ensuring a more comprehensive and reliable scan-level diagnosis by accounting for inter-slice dependencies. Experimental results show that our PVT-based framework significantly outperforms state-of-the-art deep learning architectures in terms of classification accuracy, precision, and robustness. By combining SHAP-driven feature selection, transformer-based modeling, and an entropy-aware fuzzy integral operator for decision fusion, our method offers a scalable and computationally efficient AI-driven solution for automated ICH subtype classification.
Related papers
- AI-Powered Intracranial Hemorrhage Detection: A Co-Scale Convolutional Attention Model with Uncertainty-Based Fuzzy Integral Operator and Feature Screening [5.486205584465161]
Intracranial hemorrhage (ICH) refers to the leakage or accumulation of blood within the skull.<n>The primary aim of this study is to detect the occurrence or non-occurrence of ICH, followed by determining the type of subdural hemorrhage (SDH)
arXiv Detail & Related papers (2024-12-19T14:06:44Z) - CAVE-Net: Classifying Abnormalities in Video Capsule Endoscopy [0.1937002985471497]
We propose an ensemble-based approach to improve diagnostic accuracy in analyzing complex image datasets.
We leverage the unique feature extraction capabilities of each model to enhance the overall accuracy.
By using these methods, the proposed framework, CAVE-Net, provides robust feature discrimination and improved classification results.
arXiv Detail & Related papers (2024-10-26T17:25:08Z) - CoTCoNet: An Optimized Coupled Transformer-Convolutional Network with an Adaptive Graph Reconstruction for Leukemia Detection [0.3573481101204926]
We propose an optimized Coupled Transformer Convolutional Network (CoTCoNet) framework for the classification of leukemia.
Our framework captures comprehensive global features and scalable spatial patterns, enabling the identification of complex and large-scale hematological features.
It achieves remarkable accuracy and F1-Score rates of 0.9894 and 0.9893, respectively.
arXiv Detail & Related papers (2024-10-11T13:31:28Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - MedViT: A Robust Vision Transformer for Generalized Medical Image
Classification [4.471084427623774]
We propose a robust yet efficient CNN-Transformer hybrid model which is equipped with the locality of CNNs and the global connectivity of vision Transformers.
Our proposed hybrid model demonstrates its high robustness and generalization ability compared to the state-of-the-art studies on a large-scale collection of standardized MedMNIST-2D datasets.
arXiv Detail & Related papers (2023-02-19T02:55:45Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
Quantification of retinal fluids is necessary for OCT-guided treatment management.
New convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation.
Model benefits from hierarchical representation learning of textural, contextual, and edge features.
arXiv Detail & Related papers (2022-09-26T07:18:00Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.