What's the Difference? The potential for Convolutional Neural Networks
for transient detection without template subtraction
- URL: http://arxiv.org/abs/2203.07390v3
- Date: Fri, 25 Aug 2023 14:56:40 GMT
- Title: What's the Difference? The potential for Convolutional Neural Networks
for transient detection without template subtraction
- Authors: Tatiana Acero-Cuellar, Federica Bianco, Gregory Dobler, Masao Sako and
Helen Qu and The LSST Dark Energy Science Collaboration
- Abstract summary: We present a study of the potential for Convolutional Neural Networks (CNNs) to enable separation of astrophysical transients from image artifacts.
Using data from the Dark Energy Survey, we explore the use of CNNs to automate the "real-bogus" classification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a study of the potential for Convolutional Neural Networks (CNNs)
to enable separation of astrophysical transients from image artifacts, a task
known as "real-bogus" classification without requiring a template subtracted
(or difference) image which requires a computationally expensive process to
generate, involving image matching on small spatial scales in large volumes of
data. Using data from the Dark Energy Survey, we explore the use of CNNs to (1)
automate the "real-bogus" classification, (2) reduce the computational costs of
transient discovery. We compare the efficiency of two CNNs with similar
architectures, one that uses "image triplets" (templates, search, and
difference image) and one that takes as input the template and search only. We
measure the decrease in efficiency associated with the loss of information in
input finding that the testing accuracy is reduced from 96% to 91.1%. We
further investigate how the latter model learns the required information from
the template and search by exploring the saliency maps. Our work (1) confirms
that CNNs are excellent models for "real-bogus" classification that rely
exclusively on the imaging data and require no feature engineering task; (2)
demonstrates that high-accuracy (> 90%) models can be built without the need to
construct difference images, but some accuracy is lost. Since once trained,
neural networks can generate predictions at minimal computational costs, we
argue that future implementations of this methodology could dramatically reduce
the computational costs in the detection of transients in synoptic surveys like
Rubin Observatory's Legacy Survey of Space and Time by bypassing the Difference
Image Analysis entirely.
Related papers
- Few-shot Learning using Data Augmentation and Time-Frequency
Transformation for Time Series Classification [6.830148185797109]
We propose a novel few-shot learning framework through data augmentation.
We also develop a sequence-spectrogram neural network (SSNN)
Our methodology demonstrates its applicability of addressing the few-shot problems for time series classification.
arXiv Detail & Related papers (2023-11-06T15:32:50Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
We propose a novel "Decoupled-Mixup" method to train CNN models for visual recognition.
Our method decouples each image into discriminative and noise-prone regions, and then heterogeneously combines these regions to train CNN models.
Experiment results show the high generalization performance of our method on testing data that are composed of unseen contexts.
arXiv Detail & Related papers (2022-10-26T15:21:39Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Examining and Mitigating Kernel Saturation in Convolutional Neural
Networks using Negative Images [0.8594140167290097]
We analyze the effect of convolutional kernel saturation in CNNs.
We propose a simple data augmentation technique to mitigate saturation and increase classification accuracy, by supplementing negative images to the training dataset.
Our results show that CNNs are indeed susceptible to convolutional kernel saturation and that supplementing negative images to the training dataset can offer a statistically significant increase in classification accuracies.
arXiv Detail & Related papers (2021-05-10T06:06:49Z) - MeerCRAB: MeerLICHT Classification of Real and Bogus Transients using
Deep Learning [0.0]
We present a deep learning pipeline based on the convolutional neural network architecture called $textttMeerCRAB$.
It is designed to filter out the so called 'bogus' detections from true astrophysical sources in the transient detection pipeline of the MeerLICHT telescope.
arXiv Detail & Related papers (2021-04-28T18:12:51Z) - CNNs for JPEGs: A Study in Computational Cost [49.97673761305336]
Convolutional neural networks (CNNs) have achieved astonishing advances over the past decade.
CNNs are capable of learning robust representations of the data directly from the RGB pixels.
Deep learning methods capable of learning directly from the compressed domain have been gaining attention in recent years.
arXiv Detail & Related papers (2020-12-26T15:00:10Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
We present our system for the RSNA Intracranial Hemorrhage Detection challenge.
The proposed system is based on a lightweight deep neural network architecture composed of a convolutional neural network (CNN)
We report a weighted mean log loss of 0.04989 on the final test set, which places us in the top 30 ranking (2%) from a total of 1345 participants.
arXiv Detail & Related papers (2020-08-01T17:28:25Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z) - Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance
Disparity Estimation [51.17232267143098]
We propose a novel system named Disp R-CNN for 3D object detection from stereo images.
We use a statistical shape model to generate dense disparity pseudo-ground-truth without the need of LiDAR point clouds.
Experiments on the KITTI dataset show that, even when LiDAR ground-truth is not available at training time, Disp R-CNN achieves competitive performance and outperforms previous state-of-the-art methods by 20% in terms of average precision.
arXiv Detail & Related papers (2020-04-07T17:48:45Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.