Few-shot Learning using Data Augmentation and Time-Frequency
Transformation for Time Series Classification
- URL: http://arxiv.org/abs/2311.03194v1
- Date: Mon, 6 Nov 2023 15:32:50 GMT
- Title: Few-shot Learning using Data Augmentation and Time-Frequency
Transformation for Time Series Classification
- Authors: Hao Zhang, Zhendong Pang, Jiangpeng Wang, Teng Li
- Abstract summary: We propose a novel few-shot learning framework through data augmentation.
We also develop a sequence-spectrogram neural network (SSNN)
Our methodology demonstrates its applicability of addressing the few-shot problems for time series classification.
- Score: 6.830148185797109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) that tackle the time series classification (TSC)
task have provided a promising framework in signal processing. In real-world
applications, as a data-driven model, DNNs are suffered from insufficient data.
Few-shot learning has been studied to deal with this limitation. In this paper,
we propose a novel few-shot learning framework through data augmentation, which
involves transformation through the time-frequency domain and the generation of
synthetic images through random erasing. Additionally, we develop a
sequence-spectrogram neural network (SSNN). This neural network model composes
of two sub-networks: one utilizing 1D residual blocks to extract features from
the input sequence while the other one employing 2D residual blocks to extract
features from the spectrogram representation. In the experiments, comparison
studies of different existing DNN models with/without data augmentation are
conducted on an amyotrophic lateral sclerosis (ALS) dataset and a wind turbine
fault (WTF) dataset. The experimental results manifest that our proposed method
achieves 93.75% F1 score and 93.33% accuracy on the ALS datasets while 95.48%
F1 score and 95.59% accuracy on the WTF datasets. Our methodology demonstrates
its applicability of addressing the few-shot problems for time series
classification.
Related papers
- Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification [0.0]
We introduce a new class of neural networks that are shift invariant and preserve smoothness of the data: functional neural networks (FNNs)
For this, we use methods from functional data analysis (FDA) to extend multi-layer perceptrons and convolutional neural networks to functional data.
We show that the models outperform a benchmark model from FDA in terms of accuracy and successfully use FNNs to classify electroencephalography (EEG) data.
arXiv Detail & Related papers (2023-01-14T09:41:21Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - A data filling methodology for time series based on CNN and (Bi)LSTM
neural networks [0.0]
We develop two Deep Learning models aimed at filling data gaps in time series obtained from monitored apartments in Bolzano, Italy.
Our approach manages to capture the fluctuating nature of the data and shows good accuracy in reconstructing the target time series.
arXiv Detail & Related papers (2022-04-21T09:40:30Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Drowsiness Detection Based On Driver Temporal Behavior Using a New
Developed Dataset [1.8811803364757564]
We apply YOLOv3 (You Look Only Once-version3) CNN for extracting facial features automatically.
Then, LSTM neural network is employed to learn driver temporal behaviors including yawning and blinking time period.
Results indicate the hybrid of CNN and LSTM ability in drowsiness detection and the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-03-31T21:15:29Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Comparing SNNs and RNNs on Neuromorphic Vision Datasets: Similarities
and Differences [36.82069150045153]
Spiking neural networks (SNNs) and recurrent neural networks (RNNs) are benchmarked on neuromorphic data.
In this work, we make a systematic study to compare SNNs and RNNs on neuromorphic data.
arXiv Detail & Related papers (2020-05-02T10:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.