Don't fear the unlabelled: safe deep semi-supervised learning via simple
debiasing
- URL: http://arxiv.org/abs/2203.07512v2
- Date: Wed, 16 Mar 2022 11:08:30 GMT
- Title: Don't fear the unlabelled: safe deep semi-supervised learning via simple
debiasing
- Authors: Hugo Schmutz, Olivier Humbert and Pierre-Alexandre Mattei
- Abstract summary: Semi supervised learning (SSL) provides an effective means of leveraging unlabelled data to improve a model's performance.
Most methods present the common drawback of being unsafe.
This bias makes these techniques untrustable without a proper validation set.
- Score: 12.569695703536615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi supervised learning (SSL) provides an effective means of leveraging
unlabelled data to improve a model's performance. Even though the domain has
received a considerable amount of attention in the past years, most methods
present the common drawback of being unsafe. By safeness we mean the quality of
not degrading a fully supervised model when including unlabelled data. Our
starting point is to notice that the estimate of the risk that most
discriminative SSL methods minimise is biased, even asymptotically. This bias
makes these techniques untrustable without a proper validation set, but we
propose a simple way of removing the bias. Our debiasing approach is
straightforward to implement, and applicable to most deep SSL methods. We
provide simple theoretical guarantees on the safeness of these modified
methods, without having to rely on the strong assumptions on the data
distribution that SSL theory usually requires. We evaluate debiased versions of
different existing SSL methods and show that debiasing can compete with classic
deep SSL techniques in various classic settings and even performs well when
traditional SSL fails.
Related papers
- Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning [4.137391543972184]
Semi-supervised learning (SSL) has witnessed remarkable progress, resulting in numerous method variations.
In this paper, we present a novel SSL approach named FineSSL that significantly addresses this limitation by adapting pre-trained foundation models.
We demonstrate that FineSSL sets a new state of the art for SSL on multiple benchmark datasets, reduces the training cost by over six times, and can seamlessly integrate various fine-tuning and modern SSL algorithms.
arXiv Detail & Related papers (2024-05-20T03:33:12Z) - Reinforcement Learning-Guided Semi-Supervised Learning [20.599506122857328]
We propose a novel Reinforcement Learning Guided SSL method, RLGSSL, that formulates SSL as a one-armed bandit problem.
RLGSSL incorporates a carefully designed reward function that balances the use of labeled and unlabeled data to enhance generalization performance.
We demonstrate the effectiveness of RLGSSL through extensive experiments on several benchmark datasets and show that our approach achieves consistent superior performance compared to state-of-the-art SSL methods.
arXiv Detail & Related papers (2024-05-02T21:52:24Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
Semi-supervised learning (SSL) is a practical challenge in computer vision.
Pseudo-label (PL) methods, e.g., FixMatch and FreeMatch, obtain the State Of The Art (SOTA) performances in SSL.
We propose a lightweight channel-based ensemble method to consolidate multiple inferior PLs into the theoretically guaranteed unbiased and low-variance one.
arXiv Detail & Related papers (2024-03-27T09:49:37Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
Self-Supervised Learning is crucial for real-world applications, especially in data-hungry domains such as healthcare and self-driving cars.
In this paper, we explore variants of SSL methods, including Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision, as well as BERT and GPT for language tasks.
Our goal is to create a benchmark with outputs from experiments, providing a starting point for new SSL methods in Reliable Machine Learning.
arXiv Detail & Related papers (2022-12-23T15:46:23Z) - MaxMatch: Semi-Supervised Learning with Worst-Case Consistency [149.03760479533855]
We propose a worst-case consistency regularization technique for semi-supervised learning (SSL)
We present a generalization bound for SSL consisting of the empirical loss terms observed on labeled and unlabeled training data separately.
Motivated by this bound, we derive an SSL objective that minimizes the largest inconsistency between an original unlabeled sample and its multiple augmented variants.
arXiv Detail & Related papers (2022-09-26T12:04:49Z) - Towards Realistic Semi-Supervised Learning [73.59557447798134]
We propose a novel approach to tackle SSL in open-world setting, where we simultaneously learn to classify known and unknown classes.
Our approach substantially outperforms the existing state-of-the-art on seven diverse datasets.
arXiv Detail & Related papers (2022-07-05T19:04:43Z) - OpenLDN: Learning to Discover Novel Classes for Open-World
Semi-Supervised Learning [110.40285771431687]
Semi-supervised learning (SSL) is one of the dominant approaches to address the annotation bottleneck of supervised learning.
Recent SSL methods can effectively leverage a large repository of unlabeled data to improve performance while relying on a small set of labeled data.
This work introduces OpenLDN that utilizes a pairwise similarity loss to discover novel classes.
arXiv Detail & Related papers (2022-07-05T18:51:05Z) - A Strong Baseline for Semi-Supervised Incremental Few-Shot Learning [54.617688468341704]
Few-shot learning aims to learn models that generalize to novel classes with limited training samples.
We propose a novel paradigm containing two parts: (1) a well-designed meta-training algorithm for mitigating ambiguity between base and novel classes caused by unreliable pseudo labels and (2) a model adaptation mechanism to learn discriminative features for novel classes while preserving base knowledge using few labeled and all the unlabeled data.
arXiv Detail & Related papers (2021-10-21T13:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.