Quantum Computation of Reactions on Surfaces Using Local Embedding
- URL: http://arxiv.org/abs/2203.07536v3
- Date: Mon, 23 Oct 2023 19:04:39 GMT
- Title: Quantum Computation of Reactions on Surfaces Using Local Embedding
- Authors: Tanvi P. Gujarati, Mario Motta, Triet Nguyen Friedhoff, Julia E. Rice,
Nam Nguyen, Panagiotis Kl. Barkoutsos, Richard J. Thompson, Tyler Smith,
Marna Kagele, Mark Brei, Barbara A. Jones, Kristen Williams
- Abstract summary: We develop and compare two local embedding methods for the systematic determination of active spaces.
To reduce the quantum resources required for the simulation of the selected active spaces using quantum algorithms, we introduce a technique for exact and automated circuit simplification.
Our study identifies reactions of molecules on surfaces, in conjunction with the proposed algorithmic workflow, as a promising research direction in the field of quantum computing applied to materials science.
- Score: 1.696959441235195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling electronic systems is an important application for quantum
computers. In the context of materials science, an important open problem is
the computational description of chemical reactions on surfaces. In this work,
we outline a workflow to model the adsorption and reaction of molecules on
surfaces using quantum computing algorithms. We develop and compare two local
embedding methods for the systematic determination of active spaces. These
methods are automated and based on the physics of molecule-surface interactions
and yield systematically improvable active spaces. Furthermore, to reduce the
quantum resources required for the simulation of the selected active spaces
using quantum algorithms, we introduce a technique for exact and automated
circuit simplification. This technique is applicable to a broad class of
quantum circuits and critical to enable demonstration on near-term quantum
devices. We apply the proposed combination of active-space selection and
circuit simplification to the dissociation of water on a magnesium surface
using classical simulators and quantum hardware. Our study identifies reactions
of molecules on surfaces, in conjunction with the proposed algorithmic
workflow, as a promising research direction in the field of quantum computing
applied to materials science.
Related papers
- Quantum Extreme Learning of molecular potential energy surfaces and force fields [5.13730975608994]
A quantum neural network is used to learn the potential energy surface and force field of molecular systems.
This particular supervised learning routine allows for resource-efficient training, consisting of a simple linear regression performed on a classical computer.
We have tested a setup that can be used to study molecules of any dimension and is optimized for immediate use on NISQ devices.
Compared to other supervised learning routines, the proposed setup requires minimal quantum resources, making it feasible for direct implementation on quantum platforms.
arXiv Detail & Related papers (2024-06-20T18:00:01Z) - Simulation of a Diels-Alder Reaction on a Quantum Computer [0.0]
This study explores the potential applications of quantum algorithms and hardware in investigating chemical reactions.
Our goal is to calculate the activation barrier of a reaction between ethylene and cyclopentadiene forming a transition state.
We conduct simulations on IBM quantum hardware using up to 8 qubits, and compute accurate activation barriers.
arXiv Detail & Related papers (2024-03-12T22:29:07Z) - Non-adiabatic quantum dynamics with fermionic subspace-expansion
algorithms on quantum computers [0.0]
We introduce a novel computational framework for excited-states molecular quantum dynamics simulations.
We calculate the required excited-state transition properties with different flavors of the quantum subspace expansion and quantum equation-of-motion algorithms.
We show that only methods that can capture both weak and strong electron correlation effects can properly describe the non-adiabatic effects that tune the reactive event.
arXiv Detail & Related papers (2024-02-23T15:09:19Z) - Quantum Eigenvector Continuation for Chemistry Applications [57.70351255180495]
We show that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states.
In all cases, we show that the PES can be captured using relatively few basis states.
arXiv Detail & Related papers (2023-04-28T19:22:58Z) - Simulation of chemical reaction dynamics based on quantum computing [1.9441762996158096]
We develop the ab initio molecular dynamics based on quantum computing to simulate reaction dynamics.
We use this approach to calculate Hessian matrix and evaluate resources.
Our results suggest that it is reliable to characterize the molecular structure, property, and reactivity.
arXiv Detail & Related papers (2023-03-15T12:49:10Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Digital quantum simulation of molecular dynamics and control [0.0]
We study how quantum computers could be employed to design optimally-shaped fields to control molecular systems.
We introduce a hybrid algorithm that utilizes a quantum computer for simulating the field-induced quantum dynamics of a molecular system in time.
Numerical illustrations are then presented that explicitly treat paradigmatic vibrational and rotational control problems.
arXiv Detail & Related papers (2020-02-28T00:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.