Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator
- URL: http://arxiv.org/abs/2012.12281v1
- Date: Tue, 22 Dec 2020 19:00:04 GMT
- Title: Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator
- Authors: Sepehr Ebadi, Tout T. Wang, Harry Levine, Alexander Keesling, Giulia
Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen
Wei Ho, Soonwon Choi, Subir Sachdev, Markus Greiner, Vladan Vuletic, Mikhail
D. Lukin
- Abstract summary: We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
- Score: 41.74498230885008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by far-reaching applications ranging from quantum simulations of
complex processes in physics and chemistry to quantum information processing, a
broad effort is currently underway to build large-scale programmable quantum
systems. Such systems provide unique insights into strongly correlated quantum
matter, while at the same time enabling new methods for computation and
metrology. Here, we demonstrate a programmable quantum simulator based on
deterministically prepared two-dimensional arrays of neutral atoms, featuring
strong interactions controlled via coherent atomic excitation into Rydberg
states. Using this approach, we realize a quantum spin model with tunable
interactions for system sizes ranging from 64 to 256 qubits. We benchmark the
system by creating and characterizing high-fidelity antiferromagnetically
ordered states, and demonstrate the universal properties of an Ising quantum
phase transition in (2+1) dimensions. We then create and study several new
quantum phases that arise from the interplay between interactions and coherent
laser excitation, experimentally map the phase diagram, and investigate the
role of quantum fluctuations. Offering a new lens into the study of complex
quantum matter, these observations pave the way for investigations of exotic
quantum phases, non-equilibrium entanglement dynamics, and hardware-efficient
realization of quantum algorithms.
Related papers
- Quantum walks and entanglement in cavity networks [0.0]
We analyze the quantum properties of multipartite quantum systems, consisting of an arbitrarily large collection of optical cavities with two-level atoms.
We explore quantum walks in such systems and determine the resulting entanglement.
The topology of torus and the non-orientable M"obius strip serve as examples of complex networks we consider.
arXiv Detail & Related papers (2024-04-17T12:46:21Z) - Quantum metrology in complex systems and experimental verification by
quantum simulation [3.1179335904543537]
We briefly review the schemes of quantum metrology in various complex systems, including non-Markovian noise, correlated noise, quantum critical system.
On the other hand, the booming development of quantum information allows us to utilize quantum simulation experiments to test the feasibility of various theoretical schemes.
arXiv Detail & Related papers (2023-07-05T03:29:56Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Cooperative quantum phenomena in light-matter platforms [0.34376560669160383]
cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes.
This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity.
arXiv Detail & Related papers (2021-07-06T15:27:23Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - A general quantum algorithm for open quantum dynamics demonstrated with
the Fenna-Matthews-Olson complex [0.0]
We develop a quantum algorithm to simulate any dynamical process represented by either the operator sum representation or the Lindblad master equation.
We demonstrate the quantum algorithm by simulating the dynamics of the Fenna-Matthews-Olson complex on the IBM QASM quantum simulator.
arXiv Detail & Related papers (2021-01-13T19:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.