Seamlessly Integrating Factual Information and Social Content with
Persuasive Dialogue
- URL: http://arxiv.org/abs/2203.07657v3
- Date: Fri, 23 Sep 2022 17:06:33 GMT
- Title: Seamlessly Integrating Factual Information and Social Content with
Persuasive Dialogue
- Authors: Maximillian Chen, Weiyan Shi, Feifan Yan, Ryan Hou, Jingwen Zhang,
Saurav Sahay, Zhou Yu
- Abstract summary: We present a novel modular dialogue system framework that seamlessly integrates factual information and social content into persuasive dialogue.
Our framework is generalizable to any dialogue tasks that have mixed social and task contents.
- Score: 48.75221685739286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex conversation settings such as persuasion involve communicating
changes in attitude or behavior, so users' perspectives need to be addressed,
even when not directly related to the topic. In this work, we contribute a
novel modular dialogue system framework that seamlessly integrates factual
information and social content into persuasive dialogue. Our framework is
generalizable to any dialogue tasks that have mixed social and task contents.
We conducted a study that compared user evaluations of our framework versus a
baseline end-to-end generation model. We found our framework was evaluated more
favorably in all dimensions including competence and friendliness, compared to
the end-to-end model which does not explicitly handle social content or factual
questions.
Related papers
- Scalable Frame-based Construction of Sociocultural NormBases for Socially-Aware Dialogues [66.69453609603875]
Sociocultural norms serve as guiding principles for personal conduct in social interactions.
We propose a scalable approach for constructing a Sociocultural Norm (SCN) Base using Large Language Models (LLMs)
We construct a comprehensive and publicly accessible Chinese Sociocultural NormBase.
arXiv Detail & Related papers (2024-10-04T00:08:46Z) - Context Does Matter: Implications for Crowdsourced Evaluation Labels in Task-Oriented Dialogue Systems [57.16442740983528]
Crowdsourced labels play a crucial role in evaluating task-oriented dialogue systems.
Previous studies suggest using only a portion of the dialogue context in the annotation process.
This study investigates the influence of dialogue context on annotation quality.
arXiv Detail & Related papers (2024-04-15T17:56:39Z) - Improving Dialog Safety using Socially Aware Contrastive Learning [8.503001932363704]
We study prosociality in both adversarial and casual dialog contexts.
We propose a dual-step fine-tuning process to address these issues.
We train a base model that integrates prosocial behavior by leveraging datasets like Moral Integrity Corpus (MIC) and ProsocialDialog.
arXiv Detail & Related papers (2024-02-01T09:24:33Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
We present a new dialogue dataset, HybriDialogue, which consists of crowdsourced natural conversations grounded on both Wikipedia text and tables.
The conversations are created through the decomposition of complex multihop questions into simple, realistic multiturn dialogue interactions.
arXiv Detail & Related papers (2022-04-28T00:52:16Z) - Commonsense-Focused Dialogues for Response Generation: An Empirical
Study [39.49727190159279]
We present an empirical study of commonsense in dialogue response generation.
We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet.
We then collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting.
arXiv Detail & Related papers (2021-09-14T04:32:09Z) - Topic-Oriented Spoken Dialogue Summarization for Customer Service with
Saliency-Aware Topic Modeling [61.67321200994117]
In a customer service system, dialogue summarization can boost service efficiency by creating summaries for long spoken dialogues.
In this work, we focus on topic-oriented dialogue summarization, which generates highly abstractive summaries.
We propose a novel topic-augmented two-stage dialogue summarizer ( TDS) jointly with a saliency-aware neural topic model (SATM) for topic-oriented summarization of customer service dialogues.
arXiv Detail & Related papers (2020-12-14T07:50:25Z) - Fact-based Dialogue Generation with Convergent and Divergent Decoding [2.28438857884398]
This paper proposes an end-to-end fact-based dialogue system augmented with the ability of convergent and divergent thinking.
Our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses.
arXiv Detail & Related papers (2020-05-06T23:49:35Z) - Building A User-Centric and Content-Driven Socialbot [2.072266782237039]
We develop a system architecture that is capable of accommodating dialog strategies that we designed for socialbot conversations.
The architecture consists of a multi-dimensional language understanding module for analyzing user utterances.
We construct a new knowledge base to power the socialbot by collecting social chat content from a variety of sources.
arXiv Detail & Related papers (2020-05-06T07:11:57Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
Task-oriented dialog systems are attracting more and more attention in academic and industrial communities.
We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning, and (3) integrating domain knowledge into the dialog model.
arXiv Detail & Related papers (2020-03-17T01:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.