Scalable Penalized Regression for Noise Detection in Learning with Noisy
Labels
- URL: http://arxiv.org/abs/2203.07788v1
- Date: Tue, 15 Mar 2022 11:09:58 GMT
- Title: Scalable Penalized Regression for Noise Detection in Learning with Noisy
Labels
- Authors: Yikai Wang, Xinwei Sun, and Yanwei Fu
- Abstract summary: We propose using a theoretically guaranteed noisy label detection framework to detect and remove noisy data for Learning with Noisy Labels (LNL)
Specifically, we design a penalized regression to model the linear relation between network features and one-hot labels.
To make the framework scalable to datasets that contain a large number of categories and training data, we propose a split algorithm to divide the whole training set into small pieces.
- Score: 44.79124350922491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Noisy training set usually leads to the degradation of generalization and
robustness of neural networks. In this paper, we propose using a theoretically
guaranteed noisy label detection framework to detect and remove noisy data for
Learning with Noisy Labels (LNL). Specifically, we design a penalized
regression to model the linear relation between network features and one-hot
labels, where the noisy data are identified by the non-zero mean shift
parameters solved in the regression model. To make the framework scalable to
datasets that contain a large number of categories and training data, we
propose a split algorithm to divide the whole training set into small pieces
that can be solved by the penalized regression in parallel, leading to the
Scalable Penalized Regression (SPR) framework. We provide the non-asymptotic
probabilistic condition for SPR to correctly identify the noisy data. While SPR
can be regarded as a sample selection module for standard supervised training
pipeline, we further combine it with semi-supervised algorithm to further
exploit the support of noisy data as unlabeled data. Experimental results on
several benchmark datasets and real-world noisy datasets show the effectiveness
of our framework. Our code and pretrained models are released at
https://github.com/Yikai-Wang/SPR-LNL.
Related papers
- Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Knockoffs-SPR: Clean Sample Selection in Learning with Noisy Labels [56.81761908354718]
We propose a novel theoretically guaranteed clean sample selection framework for learning with noisy labels.
Knockoffs-SPR can be regarded as a sample selection module for a standard supervised training pipeline.
We further combine it with a semi-supervised algorithm to exploit the support of noisy data as unlabeled data.
arXiv Detail & Related papers (2023-01-02T07:13:28Z) - Learning Confident Classifiers in the Presence of Label Noise [5.829762367794509]
This paper proposes a probabilistic model for noisy observations that allows us to build a confident classification and segmentation models.
Our experiments show that our algorithm outperforms state-of-the-art solutions for the considered classification and segmentation problems.
arXiv Detail & Related papers (2023-01-02T04:27:25Z) - Towards Harnessing Feature Embedding for Robust Learning with Noisy
Labels [44.133307197696446]
The memorization effect of deep neural networks (DNNs) plays a pivotal role in recent label noise learning methods.
We propose a novel feature embedding-based method for deep learning with label noise, termed LabEl NoiseDilution (LEND)
arXiv Detail & Related papers (2022-06-27T02:45:09Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
meta-learner is prone to overfitting since there are only a few available samples.
When handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise.
We present Eigen-Reptile (ER) that updates the meta- parameters with the main direction of historical task-specific parameters.
arXiv Detail & Related papers (2022-06-04T08:48:02Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
We propose a principled approach for robust training of over-parameterized deep networks in classification tasks where a proportion of training labels are corrupted.
The main idea is yet very simple: label noise is sparse and incoherent with the network learned from clean data, so we model the noise and learn to separate it from the data.
Remarkably, when trained using such a simple method in practice, we demonstrate state-of-the-art test accuracy against label noise on a variety of real datasets.
arXiv Detail & Related papers (2022-02-28T18:50:10Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.