論文の概要: Block-Recurrent Transformers
- arxiv url: http://arxiv.org/abs/2203.07852v1
- Date: Fri, 11 Mar 2022 23:44:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-16 15:06:07.224601
- Title: Block-Recurrent Transformers
- Title(参考訳): ブロックリカレントトランス
- Authors: DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, Behnam
Neyshabur
- Abstract要約: 本稿では,逐次的にトランス層を適用するBlock-Recurrent Transformerを提案する。
我々のリカレントセルはシングルトークンではなくトークンブロック上で動作し、アクセルハードウェアを効率的に活用するためにブロック内の並列計算を利用する。
- 参考スコア(独自算出の注目度): 49.07682696216708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the Block-Recurrent Transformer, which applies a transformer
layer in a recurrent fashion along a sequence, and has linear complexity with
respect to sequence length. Our recurrent cell operates on blocks of tokens
rather than single tokens, and leverages parallel computation within a block in
order to make efficient use of accelerator hardware. The cell itself is
strikingly simple. It is merely a transformer layer: it uses self-attention and
cross-attention to efficiently compute a recurrent function over a large set of
state vectors and tokens. Our design was inspired in part by LSTM cells, and it
uses LSTM-style gates, but it scales the typical LSTM cell up by several orders
of magnitude.
Our implementation of recurrence has the same cost in both computation time
and parameter count as a conventional transformer layer, but offers
dramatically improved perplexity in language modeling tasks over very long
sequences. Our model out-performs a long-range Transformer XL baseline by a
wide margin, while running twice as fast. We demonstrate its effectiveness on
PG19 (books), arXiv papers, and GitHub source code.
- Abstract(参考訳): 本稿では,逐次的に変圧器層を逐次的に適用し,シーケンス長に関して線形複雑度を有するブロックリカレント変圧器を提案する。
当社のリカレントセルは,シングルトークンではなくトークンブロック上で動作し,アクセラレーションハードウェアを効率的に利用するために,ブロック内の並列計算を活用する。
細胞そのものは非常に単純です
これは単なるトランスフォーマー層であり、多数の状態ベクトルとトークンのセット上で再帰関数を効率的に計算するために自己アテンションとクロスアテンションを使用する。
我々の設計はLSTM細胞にインスピレーションを受けており、LSTMスタイルのゲートを使用しているが、典型的なLSTM細胞を数桁スケールする。
再帰性の実装は,従来の変圧器層と計算時間とパラメータカウントの双方で同じコストがかかるが,非常に長いシーケンス上での言語モデリングタスクの難易度は劇的に向上する。
我々のモデルは、長距離トランスフォーマーXLベースラインを2倍の速さで上回ります。
PG19(書籍)、arXivの論文、GitHubのソースコードでその効果を実証する。
関連論文リスト
- Parallelizing Linear Transformers with the Delta Rule over Sequence Length [49.88826673324244]
この研究は、デルタ則で線形変圧器を訓練するためのハードウェア効率の良いアルゴリズムについて述べる。
我々は100Bトークンに対して1.3Bモデルをトレーニングし、最近の線形時間ベースラインよりも優れていることを発見した。
論文 参考訳(メタデータ) (2024-06-10T17:24:42Z) - MoEUT: Mixture-of-Experts Universal Transformers [75.96744719516813]
ユニバーサルトランスフォーマー(UT)は、合成一般化の学習において標準トランスフォーマーよりも有利である。
層共有は、同じ次元を持つ非共有モデルと比較してパラメータ数を大幅に削減する。
従来の作業では、言語モデリングのようなパラメータ数の支配的なタスクと競合する共有層トランスフォーマー設計の提案に成功しなかった。
論文 参考訳(メタデータ) (2024-05-25T03:24:32Z) - Block-State Transformers [41.57016890030355]
状態空間モデル(SSM)は、長距離依存のモデリングを必要とするタスクに対して印象的な結果を示している。
本稿では,長距離コンテキスト化のためのSSMサブレイヤを内部的に結合したBST(Block-State Transformer)というハイブリッド層を提案する。
我々のモデルは言語モデリングの難易度において類似のTransformerベースのアーキテクチャよりも優れており、より長いシーケンスに一般化できることを示す。
論文 参考訳(メタデータ) (2023-06-15T22:48:08Z) - Fourier Transformer: Fast Long Range Modeling by Removing Sequence
Redundancy with FFT Operator [24.690247474891958]
フーリエ変換器は、様々な大きな事前訓練されたモデルから継承する能力を維持しながら、計算コストを大幅に削減することができる。
本モデルは,長距離モデリングベンチマークLRAにおいて,トランスフォーマーベースモデル間の最先端性能を実現する。
CNN/DailyMailやELI5などのシークエンシャルなシークエンスタスクでは、BARTを継承することで、私たちのモデルは標準のBARTよりも優れています。
論文 参考訳(メタデータ) (2023-05-24T12:33:06Z) - Linearizing Transformer with Key-Value Memory Bank [54.83663647680612]
我々は、ソースシーケンスを低次元表現に投影するアプローチであるMemSizerを提案する。
MemSizerは同じ線形時間複雑性を達成するだけでなく、効率的なリカレントスタイルの自己回帰生成も楽しめる。
我々はMemSizerがバニラ変圧器の効率と精度のトレードオフを改善することを実証した。
論文 参考訳(メタデータ) (2022-03-23T18:10:18Z) - Learning Bounded Context-Free-Grammar via LSTM and the
Transformer:Difference and Explanations [51.77000472945441]
Long Short-Term Memory (LSTM) と Transformer は、自然言語処理タスクに使用される2つの一般的なニューラルネットワークアーキテクチャである。
実際には、トランスフォーマーモデルの方がLSTMよりも表現力が高いことがよく見られる。
本研究では,LSTMとTransformerの実践的差異について検討し,その潜在空間分解パターンに基づく説明を提案する。
論文 参考訳(メタデータ) (2021-12-16T19:56:44Z) - Sparse is Enough in Scaling Transformers [12.561317511514469]
大規模なTransformerモデルは、多くのタスクにおいて印象的な結果をもたらすが、トレーニングや微調整は高価であり、デコードが遅いため、使用と研究が手に入らない。
本稿では,スパース層を用いた次世代トランスフォーマーモデルのファミリーであるScaling Transformerを提案する。
論文 参考訳(メタデータ) (2021-11-24T19:53:46Z) - Stable, Fast and Accurate: Kernelized Attention with Relative Positional
Encoding [63.539333383965726]
相対的位置符号化(RPE)を用いた変換器の注意計算を高速化する新しい手法を提案する。
相対的な位置符号化がToeplitz行列を形成するという観測に基づいて、Fast Fourier Transform (FFT) を用いて、RPEによるカーネル化された注意を効率的に計算できることを数学的に示す。
論文 参考訳(メタデータ) (2021-06-23T17:51:26Z) - FNet: Mixing Tokens with Fourier Transforms [0.578717214982749]
Transformerエンコーダアーキテクチャは、限られた精度コストで大幅に高速化できることを示しています。
入力トークンを「混合」する単純な線形変換に自己着脱部分層を置き換える。
FNetと呼ばれる結果のモデルは、長い入力に対して非常に効率的にスケールします。
論文 参考訳(メタデータ) (2021-05-09T03:32:48Z) - Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention [22.228028613802174]
トランスフォーマーは、いくつかのタスクで顕著なパフォーマンスを達成するが、その二次的な複雑さのため、非常に長いシーケンスでは明らかに遅い。
我々は行列積の連想性を利用して複雑さを$mathcalOleft(N2right)$から$mathcalOleft(Nright)$に減らし、$N$はシーケンス長である。
線形変圧器はバニラ変圧器と同等の性能を示し、非常に長いシーケンスの自己回帰予測では最大4000倍高速である。
論文 参考訳(メタデータ) (2020-06-29T17:55:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。