Transverse Electron Beam Shaping with Light
- URL: http://arxiv.org/abs/2203.07925v2
- Date: Sun, 27 Aug 2023 14:57:48 GMT
- Title: Transverse Electron Beam Shaping with Light
- Authors: Marius Constantin Chirita Mihaila, Philipp Weber, Matthias Schneller,
Lucas Grandits, Stefan Nimmrichter, Thomas Juffmann
- Abstract summary: Interfacing electrons and light enables ultrafast electron microscopy, quantum control of electrons, and new optical elements for high sensitivity imaging.
Here we demonstrate for the first time programmable transverse electron beam shaping in free space based on ponderomotive potentials from short intense laser pulses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Interfacing electrons and light enables ultrafast electron microscopy,
quantum control of electrons, as well as new optical elements for high
sensitivity imaging. Here we demonstrate for the first time programmable
transverse electron beam shaping in free space based on ponderomotive
potentials from short intense laser pulses. We can realize both convex and
concave electron lenses with a focal length of a few millimeters, comparable to
those in state-of-the-art electron microscopes. We further show that we can
realize almost arbitrary deflection patterns by shaping the ponderomotive
potentials using a spatial light modulator. Our modulator is lossless,
programmable, has unity fill factor, and could pave the way to electron
wavefront shaping with hundreds of individually addressable pixels.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Multi-photon electron emission with non-classical light [52.77024349608834]
We present measurements of electron number-distributions from metal needle tips illuminated with ultrashort light pulses of different photon quantum statistics.
Changing the number of modes of the exciting bright squeezed vacuum light, we can tailor the electron-number distribution on demand.
arXiv Detail & Related papers (2023-07-26T12:35:03Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Ultrafast Transverse Modulation of Free Electrons by Interaction with
Shaped Optical Fields [0.0]
We experimentally demonstrate that arbitrary transverse modulation of electron beams is possible without the need for designing and fabricating complicated electron-optics elements or material nanostructures.
We illustrate this method by generating Hermite-Gaussian (HG) electron beams with HG10 and HG01 symmetry and discuss their possible use in enhancing the imaging contrast of microscopic features.
arXiv Detail & Related papers (2022-06-05T17:18:57Z) - Near-monochromatic tuneable cryogenic niobium electron field emitter [48.7576911714538]
We describe electron field emission from a monocrystalline, superconducting niobium nanotip at a temperature of 5.9 K.
The emitted electron energy spectrum reveals an ultra-narrow distribution down to 16 meV.
This source will decrease the impact of lens aberration and enable new modes in low-energy electron microscopy, electron energy loss spectroscopy, and high-resolution vibrational spectroscopy.
arXiv Detail & Related papers (2022-05-11T20:46:21Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Quantum-coherent light-electron interaction in an SEM [0.0]
We show the quantum coherent coupling between electrons and light in a scanning electron microscope.
Scanning electron microscopes afford the yet-unexplored electron energies from 0.5 to 30 keV.
Our results will allow imaging with low-energy electrons and attosecond time resolution.
arXiv Detail & Related papers (2021-10-02T09:14:14Z) - Integrated photonics enables continuous-beam electron phase modulation [0.0]
Integrated photonics can efficiently interface free electrons and light.
We demonstrate coherent phase modulation of an electron beam using a silicon nitride microresonator driven by a continuous-wave laser.
Our results highlight the potential of integrated photonics to efficiently interface free electrons and light.
arXiv Detail & Related papers (2021-05-08T16:17:01Z) - Optical Modulation of Electron Beams in Free Space [0.0]
We show that monochromatic optical fields focused in vacuum can be used to correct electron beam aberrations and produce selected focal shapes.
The required light intensities are attainable in currently available ultrafast electron microscope setups.
arXiv Detail & Related papers (2020-11-08T01:15:21Z) - Optical Excitations with Electron Beams: Challenges and Opportunities [0.0]
We provide an overview of photonics research based on free electrons, supplemented by original theoretical insights.
We show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile.
We conclude with perspectives on various exciting directions for disruptive approaches to non-invasive spectroscopy and microscopy.
arXiv Detail & Related papers (2020-10-26T12:08:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.