Natural Hierarchical Cluster Analysis by Nearest Neighbors with
Near-Linear Time Complexity
- URL: http://arxiv.org/abs/2203.08027v1
- Date: Tue, 15 Mar 2022 16:03:42 GMT
- Title: Natural Hierarchical Cluster Analysis by Nearest Neighbors with
Near-Linear Time Complexity
- Authors: Kaan Gokcesu, Hakan Gokcesu
- Abstract summary: We propose a nearest neighbor based clustering algorithm that results in a naturally defined hierarchy of clusters.
In contrast to the agglomerative and divisive hierarchical clustering algorithms, our approach is not dependent on the iterative working of the algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a nearest neighbor based clustering algorithm that results in a
naturally defined hierarchy of clusters. In contrast to the agglomerative and
divisive hierarchical clustering algorithms, our approach is not dependent on
the iterative working of the algorithm, in the sense that the partitions of the
hierarchical clusters are purely defined in accordance with the input dataset.
Our method is a universal hierarchical clustering approach since it can be
implemented as bottom up or top down versions, both of which result in the same
clustering. We show that for certain types of datasets, our algorithm has
near-linear time and space complexity.
Related papers
- Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Fast and explainable clustering based on sorting [0.0]
We introduce a fast and explainable clustering method called CLASSIX.
The algorithm is controlled by two scalar parameters, namely a distance parameter for the aggregation and another parameter controlling the minimal cluster size.
Our experiments demonstrate that CLASSIX competes with state-of-the-art clustering algorithms.
arXiv Detail & Related papers (2022-02-03T08:24:21Z) - Interpretable Clustering via Multi-Polytope Machines [12.69310440882225]
We propose a novel approach for interpretable clustering that both clusters data points and constructs polytopes around the discovered clusters to explain them.
We benchmark our approach on a suite of synthetic and real world clustering problems, where our algorithm outperforms state of the art interpretable and non-interpretable clustering algorithms.
arXiv Detail & Related papers (2021-12-10T16:36:32Z) - Exact and Approximate Hierarchical Clustering Using A* [51.187990314731344]
We introduce a new approach based on A* search for clustering.
We overcome the prohibitively large search space by combining A* with a novel emphtrellis data structure.
We empirically demonstrate that our method achieves substantially higher quality results than baselines for a particle physics use case and other clustering benchmarks.
arXiv Detail & Related papers (2021-04-14T18:15:27Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
This paper explores the problem of clustering ensemble, which aims to combine multiple base clusterings to produce better performance than that of the individual one.
We propose a novel low-rank tensor approximation-based method to solve the problem from a global perspective.
Experimental results over 7 benchmark data sets show that the proposed model achieves a breakthrough in clustering performance, compared with 12 state-of-the-art methods.
arXiv Detail & Related papers (2020-12-16T13:01:37Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Biclustering with Alternating K-Means [5.089110111757978]
We provide a new formulation of the biclustering problem based on the idea of minimizing the empirical clustering risk.
We propose a simple and novel algorithm that finds a local minimum by alternating the use of an adapted version of the k-means clustering algorithm between columns and rows.
The results demonstrate that our algorithm is able to detect meaningful structures in the data and outperform other competing biclustering methods in various settings and situations.
arXiv Detail & Related papers (2020-09-09T20:15:24Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Data Structures & Algorithms for Exact Inference in Hierarchical
Clustering [41.24805506595378]
We present novel dynamic-programming algorithms for emphexact inference in hierarchical clustering based on a novel trellis data structure.
Our algorithms scale in time and space proportional to the powerset of $N$ elements which is super-exponentially more efficient than explicitly considering each of the (2N-3)!! possible hierarchies.
arXiv Detail & Related papers (2020-02-26T17:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.