Privacy-Aware Compression for Federated Data Analysis
- URL: http://arxiv.org/abs/2203.08134v1
- Date: Tue, 15 Mar 2022 17:57:13 GMT
- Title: Privacy-Aware Compression for Federated Data Analysis
- Authors: Kamalika Chaudhuri, Chuan Guo, Mike Rabbat
- Abstract summary: Federated data analytics is a framework for distributed data analysis where a server compiles noisy responses from a group of low-bandwidth user devices to estimate aggregate statistics.
Two major challenges in this framework are privacy, since user data is often sensitive, and compression, since the user devices have low network bandwidth.
We take a holistic look at the problem and design a family of privacy-aware compression mechanisms that work for any given communication budget.
- Score: 31.970815289473965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated data analytics is a framework for distributed data analysis where a
server compiles noisy responses from a group of distributed low-bandwidth user
devices to estimate aggregate statistics. Two major challenges in this
framework are privacy, since user data is often sensitive, and compression,
since the user devices have low network bandwidth. Prior work has addressed
these challenges separately by combining standard compression algorithms with
known privacy mechanisms. In this work, we take a holistic look at the problem
and design a family of privacy-aware compression mechanisms that work for any
given communication budget. We first propose a mechanism for transmitting a
single real number that has optimal variance under certain conditions. We then
show how to extend it to metric differential privacy for location privacy
use-cases, as well as vectors, for application to federated learning. Our
experiments illustrate that our mechanism can lead to better utility vs.
compression trade-offs for the same privacy loss in a number of settings.
Related papers
- Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset.
We propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting.
arXiv Detail & Related papers (2024-03-07T21:22:07Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
Amplification by subsampling is one of the main primitives in machine learning with differential privacy.
We propose the first general framework for deriving mechanism-specific guarantees.
We analyze how subsampling affects the privacy of groups of multiple users.
arXiv Detail & Related papers (2024-03-07T19:36:05Z) - The Symmetric alpha-Stable Privacy Mechanism [0.0]
We present novel analysis of the Symmetric alpha-Stable (SaS) mechanism.
We prove that the mechanism is purely differentially private while remaining closed under convolution.
arXiv Detail & Related papers (2023-11-29T16:34:39Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
Noise reduction mechanisms produce increasingly accurate answers.
Analysts only pay the privacy cost of the least noisy or most accurate answer released.
There has yet to be any study on how ex-post private mechanisms compose.
We develop privacy filters that allow an analyst to adaptively switch between differentially private and ex-post private mechanisms.
arXiv Detail & Related papers (2023-06-24T00:33:34Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
We consider a federated learning model in a wireless system with multiple base stations and inter-cell interference.
We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap.
Our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler.
arXiv Detail & Related papers (2022-08-25T03:37:11Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Private measures, random walks, and synthetic data [7.5764890276775665]
Differential privacy is a mathematical concept that provides an information-theoretic security guarantee.
We develop a private measure from a data set that allows us to efficiently construct private synthetic data.
A key ingredient in our construction is a new superregular random walk, whose joint distribution of steps is as regular as that of independent random variables.
arXiv Detail & Related papers (2022-04-20T00:06:52Z) - Robust and Differentially Private Mean Estimation [40.323756738056616]
Differential privacy has emerged as a standard requirement in a variety of applications ranging from the U.S. Census to data collected in commercial devices.
An increasing number of such databases consist of data from multiple sources, not all of which can be trusted.
This leaves existing private analyses vulnerable to attacks by an adversary who injects corrupted data.
arXiv Detail & Related papers (2021-02-18T05:02:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.