論文の概要: Unsupervised Semantic Segmentation by Distilling Feature Correspondences
- arxiv url: http://arxiv.org/abs/2203.08414v1
- Date: Wed, 16 Mar 2022 06:08:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-17 13:39:58.330864
- Title: Unsupervised Semantic Segmentation by Distilling Feature Correspondences
- Title(参考訳): 蒸留特徴対応による教師なし意味セグメンテーション
- Authors: Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely,
William T. Freeman
- Abstract要約: 教師なしセマンティックセグメンテーション(unsupervised semantic segmentation)は、アノテーションなしで画像コーパス内の意味論的意味のあるカテゴリを発見し、ローカライズすることを目的としている。
STEGOは、教師なし特徴を高品質な個別のセマンティックラベルに蒸留する新しいフレームワークである。
STEGOは、CocoStuffとCityscapesの両課題において、先行技術よりも大幅に改善されている。
- 参考スコア(独自算出の注目度): 94.73675308961944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised semantic segmentation aims to discover and localize semantically
meaningful categories within image corpora without any form of annotation. To
solve this task, algorithms must produce features for every pixel that are both
semantically meaningful and compact enough to form distinct clusters. Unlike
previous works which achieve this with a single end-to-end framework, we
propose to separate feature learning from cluster compactification.
Empirically, we show that current unsupervised feature learning frameworks
already generate dense features whose correlations are semantically consistent.
This observation motivates us to design STEGO ($\textbf{S}$elf-supervised
$\textbf{T}$ransformer with $\textbf{E}$nergy-based $\textbf{G}$raph
$\textbf{O}$ptimization), a novel framework that distills unsupervised features
into high-quality discrete semantic labels. At the core of STEGO is a novel
contrastive loss function that encourages features to form compact clusters
while preserving their relationships across the corpora. STEGO yields a
significant improvement over the prior state of the art, on both the CocoStuff
($\textbf{+14 mIoU}$) and Cityscapes ($\textbf{+9 mIoU}$) semantic segmentation
challenges.
- Abstract(参考訳): 教師なしセマンティックセグメンテーション(unsupervised semantic segmentation)は、アノテーションなしで画像コーパス内の意味論的意味のあるカテゴリを発見し、ローカライズすることを目的としている。
この課題を解決するには、アルゴリズムは意味論的に意味があり、異なるクラスタを形成するのに十分なコンパクトな全てのピクセルに特徴を作らなければならない。
単一エンドツーエンドフレームワークでこれを実現する以前の作業とは異なり、クラスタのコンパクト化から特徴学習を分離することを提案する。
経験的に、現在、教師なしの機能学習フレームワークは、相関関係が意味的に一貫性のある密集した特徴をすでに生成していることを示す。
この観察は、STEGO$\textbf{S}$elf-supervised $\textbf{T}$ransformer with $\textbf{E}$nergy-based $\textbf{G}$raph $\textbf{O}$ptimizationという、教師なしの機能を高品質な個別のセマンティックラベルに抽出する新しいフレームワークを設計する動機付けになります。
stegoの中核となるのは,コーパス間の関係を維持しながら,コンパクトなクラスタを形成する機能を奨励する,新たなコントラスト損失関数だ。
STEGOは、CocoStuff$(\textbf{+14 mIoU}$)とCityscapes$(\textbf{+9 mIoU}$)セマンティックセマンティックセマンティックセグメンテーションの課題において、先行技術よりも大幅に改善されている。
関連論文リスト
- Spatial Semantic Recurrent Mining for Referring Image Segmentation [63.34997546393106]
高品質なクロスモーダリティ融合を実現するために,Stextsuperscript2RMを提案する。
これは、言語特徴の分散、空間的意味的再帰的分離、パーセマンティック・セマンティック・バランシングという三部作の作業戦略に従う。
提案手法は他の最先端アルゴリズムに対して好適に機能する。
論文 参考訳(メタデータ) (2024-05-15T00:17:48Z) - OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsupervised Semantic Segmentation [69.37484603556307]
Un Semantic segmenting (USS)は、事前に定義されたラベルに頼ることなく、イメージをセグメント化する。
上記の問題を同時に解決するために,OMH (Optimally Matched Hierarchy) という新しいアプローチを導入する。
我々のOMHは既存のUSS法と比較して教師なしセグメンテーション性能がよい。
論文 参考訳(メタデータ) (2024-03-11T09:46:41Z) - Unsupervised Universal Image Segmentation [59.0383635597103]
本稿では,Unsupervised Universal Model (U2Seg) を提案する。
U2Segは、自己教師付きモデルを利用して、これらのセグメンテーションタスクの擬似意味ラベルを生成する。
次に、これらの擬似意味ラベル上でモデルを自己学習し、かなりの性能向上をもたらす。
論文 参考訳(メタデータ) (2023-12-28T18:59:04Z) - A Lightweight Clustering Framework for Unsupervised Semantic
Segmentation [28.907274978550493]
教師なしセマンティックセグメンテーションは、注釈付きデータを用いることなく、画像の各ピクセルを対応するクラスに分類することを目的としている。
教師なしセマンティックセグメンテーションのための軽量クラスタリングフレームワークを提案する。
本フレームワークは,PASCAL VOCおよびMS COCOデータセットの最先端結果を実現する。
論文 参考訳(メタデータ) (2023-11-30T15:33:42Z) - SmooSeg: Smoothness Prior for Unsupervised Semantic Segmentation [27.367986520072147]
教師なしセマンティックセグメンテーションは、手動のアノテーションなしでイメージをセマンティックグループに分割する難しいタスクである。
本研究では,SmooSegという手法を提案する。SmooSegは,観察中の近接性関係をスムーズな信号としてモデル化する自己教師付き学習手法である。
SmooSegは3つのデータセットのピクセル精度でSTEGOを著しく上回っている。
論文 参考訳(メタデータ) (2023-10-27T03:29:25Z) - Fully Self-Supervised Learning for Semantic Segmentation [46.6602159197283]
セマンティックセグメンテーション(FS4)のための完全自己教師型フレームワークを提案する。
自己スーパービジョンのためのグローバルなセマンティック知識をフル活用したセマンティックセマンティックセマンティクスのためのブートストラップ付きトレーニングスキームを提案する。
大規模COCO-Stuffデータセットを用いて本手法の評価を行い,対象物と対象物の両方において7.19mIoUの改善を実現した。
論文 参考訳(メタデータ) (2022-02-24T09:38:22Z) - TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic
Segmentation [44.75300205362518]
教師なしセマンティックセグメンテーションは、手動のアノテーションを使わずに、低レベルの視覚的特徴の高レベルセマンティック表現を得ることを目的としている。
本稿では, 非常に複雑なシナリオにおける細粒度セグメンテーションのための, トップダウンの教師なしセグメンテーションフレームワークを提案する。
我々の結果は、トップダウンの教師なしセグメンテーションが、オブジェクト中心とシーン中心の両方のデータセットに対して堅牢であることを示している。
論文 参考訳(メタデータ) (2021-12-02T18:59:03Z) - Affinity Attention Graph Neural Network for Weakly Supervised Semantic
Segmentation [86.44301443789763]
弱教師付きセマンティックセグメンテーションのための親和性注意グラフニューラルネットワーク(A2$GNN)を提案する。
提案手法は,Pascal VOC 2012データセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-06-08T02:19:21Z) - Improving Semantic Segmentation via Decoupled Body and Edge Supervision [89.57847958016981]
既存のセグメンテーションアプローチは、グローバルコンテキストをモデル化することでオブジェクトの内部の一貫性を改善すること、あるいはマルチスケールの特徴融合によって境界に沿ったオブジェクトの詳細を洗練することを目的としている。
本稿では,セマンティックセグメンテーションのための新しいパラダイムを提案する。
我々の洞察は、セマンティックセグメンテーションの魅力ある性能には、画像の高頻度と低頻度に対応するオブジェクトのテキストボディとテキストエッジを具体的にモデル化する必要があるということである。
さまざまなベースラインやバックボーンネットワークを備えた提案したフレームワークが,オブジェクト内部の一貫性とオブジェクト境界を向上させることを示す。
論文 参考訳(メタデータ) (2020-07-20T12:11:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。