論文の概要: MIMO-GAN: Generative MIMO Channel Modeling
- arxiv url: http://arxiv.org/abs/2203.08588v1
- Date: Wed, 16 Mar 2022 12:36:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-17 20:42:25.017033
- Title: MIMO-GAN: Generative MIMO Channel Modeling
- Title(参考訳): MIMO-GAN:ジェネレーティブMIMOチャネルモデリング
- Authors: Tribhuvanesh Orekondy, Arash Behboodi, Joseph B. Soriaga
- Abstract要約: チャネル入力出力の測定から統計的チャネルモデルを学習するための生成チャネルモデリングを提案する。
我々は、GANの進歩を活用し、観測された測定値からチャネル上の暗黙の分布を学習するのに役立つ。
- 参考スコア(独自算出の注目度): 13.277946558463201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose generative channel modeling to learn statistical channel models
from channel input-output measurements. Generative channel models can learn
more complicated distributions and represent the field data more faithfully.
They are tractable and easy to sample from, which can potentially speed up the
simulation rounds. To achieve this, we leverage advances in GAN, which helps us
learn an implicit distribution over stochastic MIMO channels from observed
measurements. In particular, our approach MIMO-GAN implicitly models the
wireless channel as a distribution of time-domain band-limited impulse
responses. We evaluate MIMO-GAN on 3GPP TDL MIMO channels and observe
high-consistency in capturing power, delay and spatial correlation statistics
of the underlying channel. In particular, we observe MIMO-GAN achieve errors of
under 3.57 ns average delay and -18.7 dB power.
- Abstract(参考訳): チャネル入力出力の測定から統計的チャネルモデルを学習するための生成チャネルモデリングを提案する。
生成チャネルモデルは、より複雑な分布を学び、フィールドデータをより忠実に表現することができる。
それらは抽出可能で、サンプルも容易で、シミュレーションラウンドをスピードアップする可能性がある。
そこで我々は,観測結果から確率的MIMOチャネル上の暗黙分布の学習を支援するGANの進歩を活用する。
特に,mimo-ganアプローチは,帯域制限されたインパルス応答の時間領域分布として無線チャネルを暗黙的にモデル化する。
我々は,3GPP TDL MIMOチャネル上でMIMO-GANを評価し,基礎となるチャネルの捕捉,遅延,空間相関の統計値に高い一貫性を観測した。
特に、MIMO-GANが平均遅延3.57 ns、-18.7 dBの誤差を達成するのを観察する。
関連論文リスト
- How Critical is Site-Specific RAN Optimization? 5G Open-RAN Uplink Air Interface Performance Test and Optimization from Macro-Cell CIR Data [0.6753334733130354]
我々は,特定の地点からのチャネル計測データの重要性と,その空気界面の最適化と試験への影響を考察する。
我々は, NR PUSCHアップリンクシミュレーションにOmniPHY-5Gニューラルレシーバを利用する。
提案手法は、事前学習と比較して1.85dBの低信号-雑音比(SNR)で10%のブロック誤り率(BLER)を達成する。
論文 参考訳(メタデータ) (2024-10-25T13:57:48Z) - SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion [59.96233305733875]
時系列予測は、金融、交通管理、エネルギー、医療など様々な分野で重要な役割を果たしている。
いくつかの方法は、注意やミキサーのようなメカニズムを利用して、チャネル相関をキャプチャすることでこの問題に対処する。
本稿では,効率的なモデルであるSOFTS(Series-cOre Fused Time Series forecaster)を提案する。
論文 参考訳(メタデータ) (2024-04-22T14:06:35Z) - Diffusion Models for Accurate Channel Distribution Generation [19.80498913496519]
強力な生成モデルはチャネル分布を正確に学習することができる。
これにより、チャネルの物理的測定の繰り返しコストを削減できる。
結果として得られる差別化チャネルモデルは、勾配ベースの最適化を可能にすることにより、ニューラルエンコーダのトレーニングをサポートする。
論文 参考訳(メタデータ) (2023-09-19T10:35:54Z) - Generative Diffusion Models for Radio Wireless Channel Modelling and
Sampling [11.09458914721516]
チャネルモデリングの複雑さと高品質な無線チャネルデータの収集コストが大きな課題となっている。
本稿では,拡散モデルに基づくチャネルサンプリング手法を提案する。
モード崩壊や不安定なトレーニングに苦しむ既存のGANベースのアプローチと比較して,拡散型アプローチは多種多様な高忠実度サンプルを合成し,生成することを示した。
論文 参考訳(メタデータ) (2023-08-10T13:49:26Z) - Diffusion with Forward Models: Solving Stochastic Inverse Problems
Without Direct Supervision [76.32860119056964]
本稿では,直接観測されない信号の分布からサンプルを学習する拡散確率モデルを提案する。
コンピュータビジョンの課題3つの課題に対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2023-06-20T17:53:00Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
我々は,拡散モデルのサンプリング過程を高速化するために,確率フロー微分方程式の効率的な解法であるニューラル演算子を用いる。
シーケンシャルな性質を持つ他の高速サンプリング手法と比較して、並列復号法を最初に提案する。
本稿では,CIFAR-10では3.78、ImageNet-64では7.83の最先端FIDを1モデル評価環境で達成することを示す。
論文 参考訳(メタデータ) (2022-11-24T07:30:27Z) - Random Orthogonalization for Federated Learning in Massive MIMO Systems [85.71432283670114]
大規模マルチインプット・マルチアウトプット(MIMO)無線システムにおいて,フェデレートラーニング(FL)のための新しい通信設計を提案する。
ランダム直交化の主な特徴は、FLの密結合と、チャネル硬化と良好な伝播の2つの特徴から生じる。
我々は、この原理をダウンリンク通信フェーズに拡張し、FLの簡易かつ高効率なモデル放送法を開発する。
論文 参考訳(メタデータ) (2022-10-18T14:17:10Z) - MIMO Channel Estimation using Score-Based Generative Models [1.6752182911522517]
本稿では,ディープスコアに基づく生成モデルを用いたチャネル推定手法を提案する。
これらのモデルは、対数-主分布の勾配を推定するために訓練され、観測された信号の測定から推定を反復的に洗練するために使用することができる。
論文 参考訳(メタデータ) (2022-04-14T17:23:58Z) - Deep Generative Models for Downlink Channel Estimation in FDD Massive
MIMO Systems [13.267048706241157]
この課題に対処するために, 深部生成モデル(DGM)に基づく手法を提案する。
アップリンクチャネルとダウンリンクチャネルの部分的相互性を実行し、まず、周波数非依存のチャネルパラメータを推定する。
次に、各伝搬路の位相である周波数固有チャネルパラメータをダウンリンクトレーニングにより推定する。
論文 参考訳(メタデータ) (2022-03-09T18:32:10Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。