Noisy Tensor Completion via Low-rank Tensor Ring
- URL: http://arxiv.org/abs/2203.08857v1
- Date: Mon, 14 Mar 2022 14:09:43 GMT
- Title: Noisy Tensor Completion via Low-rank Tensor Ring
- Authors: Yuning Qiu, Guoxu Zhou, Qibin Zhao, Shengli Xie
- Abstract summary: tensor completion is a fundamental tool for incomplete data analysis, where the goal is to predict missing entries from partial observations.
Existing methods often make the explicit or implicit assumption that the observed entries are noise-free to provide a theoretical guarantee of exact recovery of missing entries.
This paper proposes a novel noisy tensor completion model, which complements the incompetence of existing works in handling the degeneration of high-order and noisy observations.
- Score: 41.86521269183527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor completion is a fundamental tool for incomplete data analysis, where
the goal is to predict missing entries from partial observations. However,
existing methods often make the explicit or implicit assumption that the
observed entries are noise-free to provide a theoretical guarantee of exact
recovery of missing entries, which is quite restrictive in practice. To remedy
such drawbacks, this paper proposes a novel noisy tensor completion model,
which complements the incompetence of existing works in handling the
degeneration of high-order and noisy observations. Specifically, the tensor
ring nuclear norm (TRNN) and least-squares estimator are adopted to regularize
the underlying tensor and the observed entries, respectively. In addition, a
non-asymptotic upper bound of estimation error is provided to depict the
statistical performance of the proposed estimator. Two efficient algorithms are
developed to solve the optimization problem with convergence guarantee, one of
which is specially tailored to handle large-scale tensors by replacing the
minimization of TRNN of the original tensor equivalently with that of a much
smaller one in a heterogeneous tensor decomposition framework. Experimental
results on both synthetic and real-world data demonstrate the effectiveness and
efficiency of the proposed model in recovering noisy incomplete tensor data
compared with state-of-the-art tensor completion models.
Related papers
- Low-Rank Tensor Completion via Novel Sparsity-Inducing Regularizers [30.920908325825668]
To alleviate l1-norm in the low-rank tensor completion problem, non-rank surrogates/regularizers have been suggested.
These regularizers are applied to nuclear-rank restoration, and efficient algorithms based on the method of multipliers are proposed.
arXiv Detail & Related papers (2023-10-10T01:00:13Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Error Analysis of Tensor-Train Cross Approximation [88.83467216606778]
We provide accuracy guarantees in terms of the entire tensor for both exact and noisy measurements.
Results are verified by numerical experiments, and may have important implications for the usefulness of cross approximations for high-order tensors.
arXiv Detail & Related papers (2022-07-09T19:33:59Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Robust M-estimation-based Tensor Ring Completion: a Half-quadratic
Minimization Approach [14.048989759890475]
We develop a robust approach to tensor ring completion that uses an M-estimator as its error statistic.
We present two HQ-based algorithms based on truncated singular value decomposition and matrix factorization.
arXiv Detail & Related papers (2021-06-19T04:37:50Z) - MTC: Multiresolution Tensor Completion from Partial and Coarse
Observations [49.931849672492305]
Existing completion formulation mostly relies on partial observations from a single tensor.
We propose an efficient Multi-resolution Completion model (MTC) to solve the problem.
arXiv Detail & Related papers (2021-06-14T02:20:03Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
A fundamental task is to faithfully recover tensors from highly incomplete measurements.
We develop an algorithm to directly recover the tensor factors in the Tucker decomposition.
We show that it provably converges at a linear independent rate of the ground truth tensor for two canonical problems.
arXiv Detail & Related papers (2021-04-29T17:44:49Z) - Robust Low-tubal-rank Tensor Completion based on Tensor Factorization
and Maximum Correntopy Criterion [12.02023514105999]
We propose a new objective function for low-tubal-rank tensor completion, which uses correntropy as the error measure to mitigate the effect of the outliers.
Numerical results using both synthetic and real data demonstrate the robust and superior performance of the proposed algorithms.
arXiv Detail & Related papers (2020-10-22T13:56:55Z) - Uncertainty quantification for nonconvex tensor completion: Confidence
intervals, heteroscedasticity and optimality [92.35257908210316]
We study the problem of estimating a low-rank tensor given incomplete and corrupted observations.
We find that it attains unimprovable rates $ell-2$ accuracy.
arXiv Detail & Related papers (2020-06-15T17:47:13Z) - Tensor denoising and completion based on ordinal observations [11.193504036335503]
We consider the problem of low-rank tensor estimation from possibly incomplete, ordinal-valued observations.
We propose a multi-linear cumulative link model, develop a rank-constrained M-estimator, and obtain theoretical accuracy guarantees.
We show that the proposed estimator is minimax optimal under the class of low-rank models.
arXiv Detail & Related papers (2020-02-16T07:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.