Score-Based Model for Low-Rank Tensor Recovery
- URL: http://arxiv.org/abs/2506.22295v1
- Date: Fri, 27 Jun 2025 15:05:37 GMT
- Title: Score-Based Model for Low-Rank Tensor Recovery
- Authors: Zhengyun Cheng, Changhao Wang, Guanwen Zhang, Yi Xu, Wei Zhou, Xiangyang Ji,
- Abstract summary: Low-rank tensor decompositions (TDs) provide an effective framework for multiway data analysis.<n>Traditional TD methods rely on predefined structural assumptions, such as CP or Tucker decompositions.<n>We propose a score-based model that eliminates the need for predefined structural or distributional assumptions.
- Score: 49.158601255093416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-rank tensor decompositions (TDs) provide an effective framework for multiway data analysis. Traditional TD methods rely on predefined structural assumptions, such as CP or Tucker decompositions. From a probabilistic perspective, these can be viewed as using Dirac delta distributions to model the relationships between shared factors and the low-rank tensor. However, such prior knowledge is rarely available in practical scenarios, particularly regarding the optimal rank structure and contraction rules. The optimization procedures based on fixed contraction rules are complex, and approximations made during these processes often lead to accuracy loss. To address this issue, we propose a score-based model that eliminates the need for predefined structural or distributional assumptions, enabling the learning of compatibility between tensors and shared factors. Specifically, a neural network is designed to learn the energy function, which is optimized via score matching to capture the gradient of the joint log-probability of tensor entries and shared factors. Our method allows for modeling structures and distributions beyond the Dirac delta assumption. Moreover, integrating the block coordinate descent (BCD) algorithm with the proposed smooth regularization enables the model to perform both tensor completion and denoising. Experimental results demonstrate significant performance improvements across various tensor types, including sparse and continuous-time tensors, as well as visual data.
Related papers
- Orientation-Aware Sparse Tensor PCA for Efficient Unsupervised Feature Selection [7.887782360541216]
We introduce Decomposition (TD) techniques into unsupervised feature selection (UFS)<n>We use the orientation-dependent tensor-tensor product from sparse Singular Value Decomposition to solve the problem.<n>The proposed tensor PCA model can constrain sparsity at the specified mode and yield sparse tensor principal components.
arXiv Detail & Related papers (2024-07-24T04:04:56Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Estimating Higher-Order Mixed Memberships via the $\ell_{2,\infty}$
Tensor Perturbation Bound [8.521132000449766]
We propose the tensor mixed-membership blockmodel, a generalization of the tensor blockmodel.
We establish the identifiability of our model and propose a computationally efficient estimation procedure.
We apply our methodology to real and simulated data, demonstrating some effects not identifiable from the model with discrete community memberships.
arXiv Detail & Related papers (2022-12-16T18:32:20Z) - Many-body Approximation for Non-negative Tensors [17.336552862741133]
We present an alternative approach to decompose non-negative tensors, called many-body approximation.
Traditional decomposition methods assume low-rankness in the representation, resulting in difficulties in global optimization and target rank selection.
arXiv Detail & Related papers (2022-09-30T09:45:43Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Towards Flexible Sparsity-Aware Modeling: Automatic Tensor Rank Learning
Using The Generalized Hyperbolic Prior [24.848237413017937]
rank learning for canonical polyadic decomposition (CPD) has long been deemed as an essential yet challenging problem.
The optimal determination of a tensor rank is known to be a non-deterministic-time hard (NP-hard) task.
In this paper, we introduce a more advanced generalized hyperbolic (GH) prior to the probabilistic modeling model, which is more flexible to adapt to different levels of sparsity.
arXiv Detail & Related papers (2020-09-05T06:07:21Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z) - A Unified Framework for Coupled Tensor Completion [42.19293115131073]
Coupled tensor decomposition reveals the joint data structure by incorporating priori knowledge that come from the latent coupled factors.
The TR has powerful expression ability and achieves success in some multi-dimensional data processing applications.
The proposed method is validated on numerical experiments on synthetic data, and experimental results on real-world data demonstrate its superiority over the state-of-the-art methods in terms of recovery accuracy.
arXiv Detail & Related papers (2020-01-09T02:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.