Adversarial Contrastive Learning via Asymmetric InfoNCE
- URL: http://arxiv.org/abs/2207.08374v1
- Date: Mon, 18 Jul 2022 04:14:36 GMT
- Title: Adversarial Contrastive Learning via Asymmetric InfoNCE
- Authors: Qiying Yu, Jieming Lou, Xianyuan Zhan, Qizhang Li, Wangmeng Zuo, Yang
Liu, Jingjing Liu
- Abstract summary: We propose to treat adversarial samples unequally when contrasted with an asymmetric InfoNCE objective.
In the asymmetric fashion, the adverse impacts of conflicting objectives between CL and adversarial learning can be effectively mitigated.
Experiments show that our approach consistently outperforms existing Adversarial CL methods.
- Score: 64.42740292752069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning (CL) has recently been applied to adversarial learning
tasks. Such practice considers adversarial samples as additional positive views
of an instance, and by maximizing their agreements with each other, yields
better adversarial robustness. However, this mechanism can be potentially
flawed, since adversarial perturbations may cause instance-level identity
confusion, which can impede CL performance by pulling together different
instances with separate identities. To address this issue, we propose to treat
adversarial samples unequally when contrasted, with an asymmetric InfoNCE
objective ($A-InfoNCE$) that allows discriminating considerations of
adversarial samples. Specifically, adversaries are viewed as inferior positives
that induce weaker learning signals, or as hard negatives exhibiting higher
contrast to other negative samples. In the asymmetric fashion, the adverse
impacts of conflicting objectives between CL and adversarial learning can be
effectively mitigated. Experiments show that our approach consistently
outperforms existing Adversarial CL methods across different finetuning schemes
without additional computational cost. The proposed A-InfoNCE is also a generic
form that can be readily extended to other CL methods. Code is available at
https://github.com/yqy2001/A-InfoNCE.
Related papers
- Effective Targeted Attacks for Adversarial Self-Supervised Learning [58.14233572578723]
unsupervised adversarial training (AT) has been highlighted as a means of achieving robustness in models without any label information.
We propose a novel positive mining for targeted adversarial attack to generate effective adversaries for adversarial SSL frameworks.
Our method demonstrates significant enhancements in robustness when applied to non-contrastive SSL frameworks, and less but consistent robustness improvements with contrastive SSL frameworks.
arXiv Detail & Related papers (2022-10-19T11:43:39Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
We introduce a novel neural network training framework that increases model's adversarial robustness to adversarial attacks.
We propose to improve model robustness to adversarial attacks by learning feature representations consistent under both data augmentations and adversarial perturbations.
We validate our method on the CIFAR-10 dataset on which it outperforms both robust accuracy and clean accuracy over alternative supervised and self-supervised adversarial learning methods.
arXiv Detail & Related papers (2022-03-16T21:41:27Z) - PCL: Peer-Contrastive Learning with Diverse Augmentations for
Unsupervised Sentence Embeddings [69.87899694963251]
We propose a novel Peer-Contrastive Learning (PCL) with diverse augmentations.
PCL constructs diverse contrastive positives and negatives at the group level for unsupervised sentence embeddings.
PCL can perform peer-positive contrast as well as peer-network cooperation, which offers an inherent anti-bias ability.
arXiv Detail & Related papers (2022-01-28T13:02:41Z) - PARL: Enhancing Diversity of Ensemble Networks to Resist Adversarial
Attacks via Pairwise Adversarially Robust Loss Function [13.417003144007156]
adversarial attacks tend to rely on the principle of transferability.
Ensemble methods against adversarial attacks demonstrate that an adversarial example is less likely to mislead multiple classifiers.
Recent ensemble methods have either been shown to be vulnerable to stronger adversaries or shown to lack an end-to-end evaluation.
arXiv Detail & Related papers (2021-12-09T14:26:13Z) - Incremental False Negative Detection for Contrastive Learning [95.68120675114878]
We introduce a novel incremental false negative detection for self-supervised contrastive learning.
During contrastive learning, we discuss two strategies to explicitly remove the detected false negatives.
Our proposed method outperforms other self-supervised contrastive learning frameworks on multiple benchmarks within a limited compute.
arXiv Detail & Related papers (2021-06-07T15:29:14Z) - Understanding and Achieving Efficient Robustness with Adversarial
Contrastive Learning [34.97017489872795]
Adversarial Supervised Contrastive Learning (ASCL) approach outperforms the state-of-the-art defenses by $2.6%$ in terms of the robust accuracy.
Our ASCL with the proposed selection strategy can further gain $1.4%$ improvement with only $42.8%$ positives and $6.3%$ negatives compared with ASCL without a selection strategy.
arXiv Detail & Related papers (2021-01-25T11:57:52Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - ATRO: Adversarial Training with a Rejection Option [10.36668157679368]
This paper proposes a classification framework with a rejection option to mitigate the performance deterioration caused by adversarial examples.
Applying the adversarial training objective to both a classifier and a rejection function simultaneously, we can choose to abstain from classification when it has insufficient confidence to classify a test data point.
arXiv Detail & Related papers (2020-10-24T14:05:03Z) - Contrastive Learning with Adversarial Examples [79.39156814887133]
Contrastive learning (CL) is a popular technique for self-supervised learning (SSL) of visual representations.
This paper introduces a new family of adversarial examples for constrastive learning and using these examples to define a new adversarial training algorithm for SSL, denoted as CLAE.
arXiv Detail & Related papers (2020-10-22T20:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.