論文の概要: Label Semantics for Few Shot Named Entity Recognition
- arxiv url: http://arxiv.org/abs/2203.08985v1
- Date: Wed, 16 Mar 2022 23:21:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-18 14:04:08.105687
- Title: Label Semantics for Few Shot Named Entity Recognition
- Title(参考訳): わずかなショット名付きエンティティ認識のためのラベルセマンティクス
- Authors: Jie Ma, Miguel Ballesteros, Srikanth Doss, Rishita Anubhai, Sunil
Mallya, Yaser Al-Onaizan, Dan Roth
- Abstract要約: 名前付きエンティティ認識におけるショットラーニングの問題について検討する。
我々は,ラベル名中の意味情報を,モデルに付加的な信号を与え,よりリッチな事前情報を与える手段として活用する。
本モデルは,第1エンコーダによって計算された名前付きエンティティの表現と,第2エンコーダによって計算されたラベル表現とを一致させることを学習する。
- 参考スコア(独自算出の注目度): 68.01364012546402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of few shot learning for named entity recognition.
Specifically, we leverage the semantic information in the names of the labels
as a way of giving the model additional signal and enriched priors. We propose
a neural architecture that consists of two BERT encoders, one to encode the
document and its tokens and another one to encode each of the labels in natural
language format. Our model learns to match the representations of named
entities computed by the first encoder with label representations computed by
the second encoder. The label semantics signal is shown to support improved
state-of-the-art results in multiple few shot NER benchmarks and on-par
performance in standard benchmarks. Our model is especially effective in low
resource settings.
- Abstract(参考訳): 名前付きエンティティ認識におけるショット学習の問題点について検討した。
具体的には,ラベル名に含まれる意味情報を,モデルに付加的な信号を与え,よりリッチな事前情報を与える方法として活用する。
我々は2つのbertエンコーダからなるニューラルネットワークを提案する。1つは文書とそのトークンをエンコードし、もう1つは各ラベルを自然言語形式でエンコードする。
本モデルは、第1エンコーダで計算された名前付きエンティティの表現と、第2エンコーダで計算されたラベル表現とのマッチングを学習する。
ラベルセマンティクス信号は、複数のショットNERベンチマークにおける最先端結果の改善と、標準ベンチマークにおけるオンパーパフォーマンスをサポートする。
私たちのモデルは特に低リソース設定で効果的です。
関連論文リスト
- Substituting Data Annotation with Balanced Updates and Collective Loss
in Multi-label Text Classification [19.592985329023733]
MLTC(Multi-label text classification)は、あるテキストに複数のラベルを割り当てるタスクである。
本報告では,MLTCの問題点を,ラベル数に比例して,利用可能な監視信号の大きさが線形であるアノテーションフリーおよび希少アノテーション設定で検討する。
提案手法は,(1)事前学習した言語モデルを用いて,入力テキストを事前ラベル候補の集合にマッピングし,(2)ラベル記述による署名付きラベル依存グラフの計算,(3)ラベル依存グラフに沿ったメッセージパスによる事前ラベル候補の更新を行う。
論文 参考訳(メタデータ) (2023-09-24T04:12:52Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - SpanProto: A Two-stage Span-based Prototypical Network for Few-shot
Named Entity Recognition [45.012327072558975]
名前付きエンティティ認識(NER)は、アノテーション付きデータが少ない名前付きエンティティを識別することを目的としている。
そこで本研究では,2段階のアプローチを用いて,数発のNERに対処するセミナルスパンベースプロトタイプネットワーク(SpanProto)を提案する。
スパン抽出の段階では、逐次タグを大域境界行列に変換し、モデルが明示的な境界情報に集中できるようにする。
分類に言及するために、原型学習を活用してラベル付きスパンのセマンティック表現をキャプチャし、新しいクラスエンティティへの適応性を向上する。
論文 参考訳(メタデータ) (2022-10-17T12:59:33Z) - Label2Label: A Language Modeling Framework for Multi-Attribute Learning [93.68058298766739]
Label2Labelは、言語モデリングの観点からのマルチ属性予測の最初の試みである。
NLPにおける事前学習言語モデルの成功に触発されたLabel2Labelは、イメージ条件付きマスキング言語モデルを導入した。
我々の直感は、ニューラルネットワークがコンテキストと残りの属性ヒントに基づいて欠落した属性を推測できる場合、インスタンスの属性関係がよく把握されるということである。
論文 参考訳(メタデータ) (2022-07-18T15:12:33Z) - Towards Few-shot Entity Recognition in Document Images: A Label-aware
Sequence-to-Sequence Framework [28.898240725099782]
アノテーション付き文書画像のほんの数ショットしか必要としないエンティティ認識モデルを構築します。
ラベルを意識したSeq2seqフレームワーク LASER を開発した。
2つのベンチマークデータセットの実験は、数ショット設定下でのLASERの優位性を示している。
論文 参考訳(メタデータ) (2022-03-30T18:30:42Z) - Semantic-Aware Representation Blending for Multi-Label Image Recognition
with Partial Labels [86.17081952197788]
そこで我々は,未知のラベルを補うために,異なる画像にカテゴリ固有の表現をブレンドして,既知のラベルの情報を伝達することを提案する。
MS-COCO、Visual Genome、Pascal VOC 2007データセットの実験は、提案されたSARBフレームワークが、現在の主要な競合相手よりも優れたパフォーマンスを得ることを示している。
論文 参考訳(メタデータ) (2022-03-04T07:56:16Z) - A Label Dependence-aware Sequence Generation Model for Multi-level
Implicit Discourse Relation Recognition [31.179555215952306]
暗黙の談話関係認識は、談話分析において難しいが重要な課題である。
ラベル依存型シーケンス生成モデル(LDSGM)を提案する。
ボトムアップ方向のラベル依存を利用した相互学習強化訓練法を開発した。
論文 参考訳(メタデータ) (2021-12-22T09:14:03Z) - Structured Semantic Transfer for Multi-Label Recognition with Partial
Labels [85.6967666661044]
部分ラベル付きマルチラベル認識モデルのトレーニングを可能にする構造化意味伝達(SST)フレームワークを提案する。
このフレームワークは2つの相補的なトランスファーモジュールから構成され、インテリアイメージとクロスイメージセマンティック相関を探索する。
Microsoft COCO、Visual Genome、Pascal VOCデータセットの実験は、提案されたSSTフレームワークが現在の最先端アルゴリズムよりも優れたパフォーマンスが得られることを示している。
論文 参考訳(メタデータ) (2021-12-21T02:15:01Z) - Few-shot Slot Tagging with Collapsed Dependency Transfer and
Label-enhanced Task-adaptive Projection Network [61.94394163309688]
本稿では,現在最先端の少数ショット分類モデルであるTapNetに基づくラベル強化タスク適応プロジェクションネットワーク(L-TapNet)を提案する。
実験結果から,本モデルは1ショット設定で14.64点のF1スコアで最強の少ショット学習ベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-06-10T07:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。