Investigation of Physics-Informed Deep Learning for the Prediction of
Parametric, Three-Dimensional Flow Based on Boundary Data
- URL: http://arxiv.org/abs/2203.09204v1
- Date: Thu, 17 Mar 2022 09:54:22 GMT
- Title: Investigation of Physics-Informed Deep Learning for the Prediction of
Parametric, Three-Dimensional Flow Based on Boundary Data
- Authors: Philip Heger, Markus Full, Daniel Hilger, Norbert Hosters
- Abstract summary: We present a parameterized surrogate model for the prediction of three-dimensional flow fields in aerothermal vehicle simulations.
The proposed physics-informed neural network (PINN) design is aimed at learning families of flow solutions according to a geometric variation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The placement of temperature sensitive and safety-critical components is
crucial in the automotive industry. It is therefore inevitable, even at the
design stage of new vehicles that these components are assessed for potential
safety issues. However, with increasing number of design proposals, risk
assessment quickly becomes expensive. We therefore present a parameterized
surrogate model for the prediction of three-dimensional flow fields in
aerothermal vehicle simulations. The proposed physics-informed neural network
(PINN) design is aimed at learning families of flow solutions according to a
geometric variation. In scope of this work, we could show that our
nondimensional, multivariate scheme can be efficiently trained to predict the
velocity and pressure distribution for different design scenarios and geometric
scales. The proposed algorithm is based on a parametric minibatch training
which enables the utilization of large datasets necessary for the
three-dimensional flow modeling. Further, we introduce a continuous resampling
algorithm that allows to operate on one static dataset. Every feature of our
methodology is tested individually and verified against conventional CFD
simulations. Finally, we apply our proposed method in context of an exemplary
real-world automotive application.
Related papers
- VehicleSDF: A 3D generative model for constrained engineering design via surrogate modeling [3.746111274696241]
This work explores the use of 3D generative models to explore the design space in the context of vehicle development.
We generate diverse 3D models of cars that meet a given set of geometric specifications.
We also obtain quick estimates of performance parameters such as aerodynamic drag.
arXiv Detail & Related papers (2024-10-09T16:59:24Z) - A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
The proposed framework consists of two stages, offline and online.
The online stage leverages those LANDO models to generate new data at a desired time instant.
dimensionality reduction technique is applied to high-dimensional dynamical systems to reduce the computational cost of training.
arXiv Detail & Related papers (2024-09-25T11:13:50Z) - A systematic dataset generation technique applied to data-driven automotive aerodynamics [0.0]
A novel strategy for generating datasets is developed within the context of drag prediction for automotive geometries using neural networks.
Our method relies on a small number of starting data points, and provides a recipe to interpolate systematically between them.
We test this strategy using a realistic automotive geometry, and demonstrate that convolutional neural networks perform exceedingly well at predicting drag coefficients and surface pressures.
arXiv Detail & Related papers (2024-08-14T06:37:30Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Weighted Unsupervised Domain Adaptation Considering Geometry Features
and Engineering Performance of 3D Design Data [2.306144660547256]
We propose a bi-weighted unsupervised domain adaptation approach that considers the geometry features and engineering performance of 3D design data.
The proposed model is tested on a wheel impact analysis problem to predict the magnitude of the maximum von Mises stress and the corresponding location of 3D road wheels.
arXiv Detail & Related papers (2023-09-08T00:26:44Z) - CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation [67.12857074801731]
We introduce a novel method, CPPF++, designed for sim-to-real pose estimation.
To address the challenge posed by vote collision, we propose a novel approach that involves modeling the voting uncertainty.
We incorporate several innovative modules, including noisy pair filtering, online alignment optimization, and a feature ensemble.
arXiv Detail & Related papers (2022-11-24T03:27:00Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - A Deep Learning Framework for Simulation and Defect Prediction Applied
in Microelectronics [3.8698051494433043]
We propose an architecture based on 3D Convolutional Neural Networks (3DCNN) in order to model the geometric variations in manufacturing parameters.
We validate our framework on a microelectronics use-case using the recently published PCB scans dataset.
arXiv Detail & Related papers (2020-02-25T15:54:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.