DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset
- URL: http://arxiv.org/abs/2504.08217v3
- Date: Fri, 18 Apr 2025 04:24:54 GMT
- Title: DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset
- Authors: Jiaqi He, Xiangwen Luo, Yiping Wang,
- Abstract summary: This study proposes a point cloud learning framework called DrivAer Transformer.<n>The DAT structure uses the DrivAerNet++ dataset, which contains high-fidelity CFD data of industrial-standard 3D vehicle shapes.<n>The framework is expected to accelerate the vehicle design process and improve development efficiency.
- Score: 1.184330339427731
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: At the current stage, deep learning-based methods have demonstrated excellent capabilities in evaluating aerodynamic performance, significantly reducing the time and cost required for traditional computational fluid dynamics (CFD) simulations. However, when faced with the task of processing extremely complex three-dimensional (3D) vehicle models, the lack of large-scale datasets and training resources, coupled with the inherent diversity and complexity of the geometry of different vehicle models, means that the prediction accuracy and versatility of these networks are still not up to the level required for current production. In view of the remarkable success of Transformer models in the field of natural language processing and their strong potential in the field of image processing, this study innovatively proposes a point cloud learning framework called DrivAer Transformer (DAT). The DAT structure uses the DrivAerNet++ dataset, which contains high-fidelity CFD data of industrial-standard 3D vehicle shapes. enabling accurate estimation of air drag directly from 3D meshes, thus avoiding the limitations of traditional methods such as 2D image rendering or signed distance fields (SDF). DAT enables fast and accurate drag prediction, driving the evolution of the aerodynamic evaluation process and laying the critical foundation for introducing a data-driven approach to automotive design. The framework is expected to accelerate the vehicle design process and improve development efficiency.
Related papers
- TripNet: Learning Large-scale High-fidelity 3D Car Aerodynamics with Triplane Networks [27.577307360710545]
TripNet is a machine learning-based framework leveraging triplane representations to predict the outcomes of high-fidelity CFD simulations.<n>TripNet achieves state-of-the-art performance in coefficient drag prediction, surface field estimation, and full 3D flow field simulations of industry-standard car designs.
arXiv Detail & Related papers (2025-03-19T17:30:57Z) - Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
We propose Factorized Implicit Global Convolution (FIGConv), a novel architecture that efficiently solves CFD problems for very large 3D meshes.<n>FIGConv achieves quadratic complexity $O(N2)$, a significant improvement over existing 3D neural CFD models.<n>We validate our approach on the industry-standard Ahmed body dataset and the large-scale DrivAerNet dataset.
arXiv Detail & Related papers (2025-02-06T18:57:57Z) - Drive-1-to-3: Enriching Diffusion Priors for Novel View Synthesis of Real Vehicles [81.29018359825872]
This paper consolidates a set of good practices to finetune large pretrained models for a real-world task.<n>Specifically, we develop several strategies to account for discrepancies between the synthetic data and real driving data.<n>Our insights lead to effective finetuning that results in a $68.8%$ reduction in FID for novel view synthesis over prior arts.
arXiv Detail & Related papers (2024-12-19T03:39:13Z) - An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorld is an efficient 3D occupancy world model that leverages decoupled dynamic flow and image-assisted training strategy.<n>Our model forecasts future dynamic voxels by warping existing observations using voxel flow, whereas static voxels are easily obtained through pose transformation.
arXiv Detail & Related papers (2024-12-18T12:10:33Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
We present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ dataset challenge at CVPR 2024.
Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling.
Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth.
arXiv Detail & Related papers (2024-07-01T16:32:15Z) - DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks [25.00264553520033]
DrivAerNet++ comprises 8,000 diverse car designs modeled with high-fidelity computational fluid dynamics (CFD) simulations.<n>The dataset includes diverse car configurations such as fastback, notchback, and estateback, with different underbody and wheel designs to represent both internal combustion engines and electric vehicles.<n>This dataset supports a wide array of machine learning applications including data-driven design optimization, generative modeling, surrogate model training, CFD simulation acceleration, and geometric classification.
arXiv Detail & Related papers (2024-06-13T23:19:48Z) - PLT-D3: A High-fidelity Dynamic Driving Simulation Dataset for Stereo Depth and Scene Flow [0.0]
This paper introduces Dynamic-weather Driving dataset; a high-fidelity stereo depth and scene flow ground truth data generated using Engine 5.
In particular, this dataset includes synchronized high-resolution stereo image sequences that replicate a wide array of dynamic weather scenarios.
Benchmarks have been established for several critical autonomous driving tasks using Unreal-D3 to measure and enhance the performance of state-of-the-art models.
arXiv Detail & Related papers (2024-06-11T19:21:46Z) - DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Prediction [27.313594069397862]
This study introduces DrivAerNet, a large-scale high-fidelity CFD dataset of 3D industry-standard car shapes, and RegDGCNN, a dynamic graph convolutional neural network model.<n>Together, DrivAerNet and RegDGCNN promise to accelerate the car design process and contribute to the development of more efficient cars.
arXiv Detail & Related papers (2024-03-12T20:02:39Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.