論文の概要: Non-Elitist Selection Can Improve the Performance of Irace
- arxiv url: http://arxiv.org/abs/2203.09227v3
- Date: Sat, 25 Jun 2022 23:45:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 21:01:56.577651
- Title: Non-Elitist Selection Can Improve the Performance of Irace
- Title(参考訳): 非エリート選択はiraceの性能を改善する
- Authors: Furong Ye and Diederick L. Vermetten and Carola Doerr and Thomas
B\"ack
- Abstract要約: 本研究では,旅行セールスパーソン問題に対するアリコロニー最適化アルゴリズムのチューニング方法と2次代入問題について検討する。
実験結果から, テストベンチマークでは, iraceの既定選択よりも改善が見られた。
さらに, この結果から, アルゴリズムの動作を理解するため, 多様なアルゴリズム構成が得られることが示唆された。
- 参考スコア(独自算出の注目度): 0.8258451067861933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern optimization strategies such as evolutionary algorithms, ant colony
algorithms, Bayesian optimization techniques, etc. come with several parameters
that steer their behavior during the optimization process. To obtain
high-performing algorithm instances, automated algorithm configuration
techniques have been developed. One of the most popular tools is irace, which
evaluates configurations in sequential races, making use of iterated
statistical tests to discard poorly performing configurations. At the end of
the race, a set of elite configurations are selected from those survivor
configurations that were not discarded, using greedy truncation selection. We
study two alternative selection methods: one keeps the best survivor and
selects the remaining configurations uniformly at random from the set of
survivors, while the other applies entropy to maximize the diversity of the
elites. These methods are tested for tuning ant colony optimization algorithms
for traveling salesperson problems and the quadratic assignment problem and
tuning an exact tree search solver for satisfiability problems. The
experimental results show improvement on the tested benchmarks compared to the
default selection of irace. In addition, the obtained results indicate that
non-elitist can obtain diverse algorithm configurations, which encourages us to
explore a wider range of solutions to understand the behavior of algorithms.
- Abstract(参考訳): 進化的アルゴリズム、アリコロニーアルゴリズム、ベイズ最適化手法などの現代の最適化戦略には、最適化プロセス中にその振る舞いを制御できるパラメータがいくつか含まれている。
高性能なアルゴリズムインスタンスを実現するために,自動アルゴリズム構成技術を開発した。
最も人気のあるツールのひとつがiraceで、シーケンシャルなレースにおける構成を評価し、反復統計テストを使用して、パフォーマンスの悪い設定を破棄する。
レースの終わりに、エリート構成のセットが、退場しなかった生き残った構成から選択され、欲張りな切り離し選択が行われる。
1つは最善の生存者を保持し、残りの構成は無作為に生存者の集合から選択し、もう1つはエリートの多様性を最大化するためにエントロピーを適用する。
これらの手法は, 巡回セールスパーソン問題に対するantコロニー最適化アルゴリズムと二次代入問題, 満足度問題に対する厳密な木探索ソルバのチューニングに応用できる。
実験結果から, テストベンチマークでは, iraceの既定選択よりも改善が見られた。
さらに,非エリートが多様なアルゴリズム構成を得られることを示し,アルゴリズムの挙動を理解するために,より広い範囲の解を探索することを促す。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Dynamic Incremental Optimization for Best Subset Selection [15.8362578568708]
最良のサブセット選択は、多くの学習問題に対する金の標準と見なされている。
主問題構造と双対問題構造に基づいて,効率的な部分集合双対アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-04T02:26:40Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Benchmarking Feature-based Algorithm Selection Systems for Black-box
Numerical Optimization [0.0]
特徴に基づくアルゴリズムの選択は、目に見えない問題において最適化アルゴリズムのポートフォリオから最適なアルゴリズムを自動的に見つけることを目的としている。
本稿では,24個のノイズレスブラックボックス最適化ベンチマーク関数のアルゴリズム選択システムについて分析する。
アルゴリズム選択システムの性能は, 逐次最小二乗プログラミングをプリゾルバとして利用することにより, 大幅に向上できることを示す。
論文 参考訳(メタデータ) (2021-09-17T07:17:40Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - RSO: A Novel Reinforced Swarm Optimization Algorithm for Feature
Selection [0.0]
本稿では,Reinforced Swarm Optimization (RSO) という特徴選択アルゴリズムを提案する。
このアルゴリズムは、広く使われているBee Swarm Optimization (BSO)アルゴリズムとReinforcement Learning (RL)アルゴリズムを組み込んで、優れた検索エージェントの報酬を最大化し、劣悪なエージェントを罰する。
提案手法は、バランスの取れたデータと不均衡なデータの完全なブレンドを含む、広く知られている25のUCIデータセットで評価される。
論文 参考訳(メタデータ) (2021-07-29T17:38:04Z) - Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem [0.9990687944474739]
本稿では,動的キャット群最適化(Dynamic Cat Swarm Optimization)と呼ばれる,強力な群知能メタヒューリスティック最適化アルゴリズムを提案する。
提案アルゴリズムは,アルゴリズムの選択スキームと探索モードを変更することにより,これらの位相間の適切なバランスを与える新しい手法を提案する。
最適化の結果,提案アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2021-04-27T19:41:27Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。