Quantum phases of bosonic chiral molecules in helicity lattices
- URL: http://arxiv.org/abs/2203.09246v2
- Date: Thu, 28 Jul 2022 14:23:18 GMT
- Title: Quantum phases of bosonic chiral molecules in helicity lattices
- Authors: Felipe Isaule, Robert Bennett, J\"org B. G\"otte
- Abstract summary: We reveal the existence of polarizing quantum phases for the enantiomers of cold, interacting chiral molecules in an optical helicity lattice.
We find that a strong dipolar repulsion between molecules results in the separation of left and right enantiomers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We reveal the existence of polarizing quantum phases for the enantiomers of
cold, interacting chiral molecules in an optical helicity lattice by means of
an extended Bose-Hubbard model. These recently proposed lattices have sites
with alternating helicity which exert a discriminatory force on chiral
molecules with different handedness. In our study of the phase diagram we find
that a strong dipolar repulsion between molecules results in the separation of
left and right enantiomers.
Related papers
- Collective rovibronic dynamics of a diatomic gas coupled by cavity [0.0]
We consider an ensemble of homonuclear diatomic molecules coupled to the two polarization directions of a Fabry-P'erot cavity.
We identify a coupling mechanism mediated simultaneously by the two perpendicular polarizations, and inducing polaritonic relaxation towards molecular rotations.
Our simulations indicate that the molecular rotational dynamics in gas-phase cavity-coupled systems can serve as a novel probe for non-radiative polaritonic decay towards the dark-states manifold.
arXiv Detail & Related papers (2024-01-19T14:35:35Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Unraveling a cavity induced molecular polarization mechanism from collective vibrational strong coupling [0.0]
We show that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit.
Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure.
arXiv Detail & Related papers (2023-06-09T16:18:51Z) - Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule [52.77024349608834]
We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
arXiv Detail & Related papers (2023-03-10T18:41:20Z) - Quantum Coherent Control of a Single Molecular-Polariton Rotation [2.2482144023488346]
We present a combined analytical and numerical study for coherent terahertz control of a single molecular polariton.
The presence of a cavity strongly modifies the post-pulse orientation of the polariton, making it difficult to obtain its maximal degree of orientation.
This work offers a new strategy to study rotational dynamics in the strong-coupling regime and provides a method for complete quantum coherent control of a single molecular polariton.
arXiv Detail & Related papers (2022-12-22T12:37:55Z) - Discrimination of Chiral Molecules through Holonomic Quantum Coherent
Control [6.746674500183388]
A novel optical method for distinguishing chiral molecules is proposed and validated within a quantum simulator employing a trapped-ion qudit.
Our method achieves highly efficient, non-adiabatic, and robust detection and separation of chiral molecules.
arXiv Detail & Related papers (2022-10-21T05:33:57Z) - Enantiodiscrimination of chiral molecules via quantum correlation
function [9.31688452423719]
We propose a method to realize enantiodiscrimination of chiral molecules based on quantum correlation function.
The analytical and numerical results indicate that the left- and right-handed chiral molecules can be discriminated by detecting quantum correlation function.
arXiv Detail & Related papers (2022-01-06T05:29:12Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.