Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule
- URL: http://arxiv.org/abs/2303.06126v2
- Date: Mon, 15 May 2023 17:32:23 GMT
- Title: Observation of Rydberg blockade due to the charge-dipole interaction
between an atom and a polar molecule
- Authors: Alexander Guttridge, Daniel K. Ruttley, Archie C. Baldock, Rosario
Gonz\'alez-F\'erez, H. R. Sadeghpour, C. S. Adams and Simon L. Cornish
- Abstract summary: We demonstrate Rydberg blockade due to the charge-dipole interaction between a single Rb atom and a single RbCs molecule confined in optical tweezers.
Results open up the prospect of a hybrid platform where quantum information is transferred between individually trapped molecules using Rydberg atoms.
- Score: 52.77024349608834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate Rydberg blockade due to the charge-dipole interaction between
a single Rb atom and a single RbCs molecule confined in optical tweezers. The
molecule is formed by magnetoassociation of a Rb+Cs atom pair and subsequently
transferred to the rovibrational ground state with an efficiency of 91(1)\%.
Species-specific tweezers are used to control the separation between the atom
and molecule. The charge-dipole interaction causes blockade of the transition
to the Rb(52s) Rydberg state, when the atom-molecule separation is set to
$310(40)$~nm. The observed excitation dynamics are in good agreement with
simulations using calculated interaction potentials. Our results open up the
prospect of a hybrid platform where quantum information is transferred between
individually trapped molecules using Rydberg atoms.
Related papers
- Ultralong-range Cs-RbCs Rydberg molecules: non-adiabaticity of dipole
moments [41.94295877935867]
We consider ultralong-range polyatomic Rydberg molecules formed by combining a Rydberg cesium atom and a ground-state RbCs molecule.
We explore the regime where the charge-dipole interaction due to the Rydberg electron with the diatomic polar molecule couples the quantum defect Rydberg states Cs(ns) to the nearest hydrogenic manifold.
arXiv Detail & Related papers (2024-01-17T22:05:01Z) - Trapped ion-mediated interactions between two distant trapped atoms [0.0]
We show that when two largely separated atoms interact with a trapped ion via Rydberg excitation of the atoms, the ion-mediated interaction exceeds the direct atom-atom interaction by several orders of magnitude.
Since the motion of the atoms is much slower than the motion of the ion, we resort to Born-Oppenheimer approximation to calculate the ion-mediated adiabatic potential.
arXiv Detail & Related papers (2023-10-08T10:06:20Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Quantum computation in a hybrid array of molecules and Rydberg atoms [7.425093155951875]
We show that an array of polar molecules interacting with Rydberg atoms is a promising hybrid system for scalable quantum computation.
Quantum information is stored in long-lived hyperfine or rotational states of molecules.
A two-qubit gate based on this interaction has a duration of 1 $mu$s and an achievable fidelity of 99.9%.
arXiv Detail & Related papers (2022-04-08T20:10:36Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Photodissociation of long-range Rydberg molecules [0.0]
We photoassociate K2 37P molecules with highly entangled electronic and nuclear spins of the two bound atoms.
We demonstrate a full hyperfine-spin flip of a free ground-state atom through the interaction with a Rydberg atom.
arXiv Detail & Related papers (2020-07-07T12:01:36Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z) - Observation of the Dipole Blockade Effect in Detecting Rydberg Atoms by
the Selective Field Ionization Method [0.0]
The excitation of one atom to a Rydberg state blocks the excitation of other atoms due to the shift in the collective energy levels of interacting Rydberg atoms.
We investigated the spectra of the three-photon laser excitation of cold Rb Rydberg atoms in a magneto-optical trap.
arXiv Detail & Related papers (2020-04-21T12:09:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.