論文の概要: Context-Dependent Anomaly Detection with Knowledge Graph Embedding
Models
- arxiv url: http://arxiv.org/abs/2203.09354v1
- Date: Thu, 17 Mar 2022 14:36:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-18 13:14:47.645568
- Title: Context-Dependent Anomaly Detection with Knowledge Graph Embedding
Models
- Title(参考訳): 知識グラフ埋め込みモデルを用いた文脈依存異常検出
- Authors: Nathan Vaska and Victoria Helus
- Abstract要約: 本研究では,コンテキスト依存型異常検出問題をリンク予測問題に変換するフレームワークを開発する。
本研究では,文脈依存型異常を高い精度で検出できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing the semantic understanding and contextual awareness of machine
learning models is important for improving robustness and reducing
susceptibility to data shifts. In this work, we leverage contextual awareness
for the anomaly detection problem. Although graphed-based anomaly detection has
been widely studied, context-dependent anomaly detection is an open problem and
without much current research. We develop a general framework for converting a
context-dependent anomaly detection problem to a link prediction problem,
allowing well-established techniques from this domain to be applied. We
implement a system based on our framework that utilizes knowledge graph
embedding models and demonstrates the ability to detect outliers using context
provided by a semantic knowledge base. We show that our method can detect
context-dependent anomalies with a high degree of accuracy and show that
current object detectors can detect enough classes to provide the needed
context for good performance within our example domain.
- Abstract(参考訳): 機械学習モデルの意味理解と文脈認識の増大は、ロバスト性の向上とデータシフトに対する感受性の低減に重要である。
本研究では,異常検出問題に対して文脈認識を利用する。
グラフに基づく異常検出は広く研究されているが、文脈依存異常検出はオープンな問題であり、多くの研究がされていない。
本稿では,コンテキスト依存異常検出問題をリンク予測問題に変換する汎用フレームワークを開発し,この領域の確立した手法を適用することを可能にする。
我々は,知識グラフ埋め込みモデルを用いたフレームワークに基づくシステムを実装し,意味的知識ベースが提供するコンテキストを用いて,アウトリーチを検出する能力を示す。
提案手法は,精度の高いコンテキスト依存型異常を検出できることを示すとともに,現在のオブジェクト検出装置が,実例領域内での良好な性能を実現するために必要なクラスを検出可能であることを示す。
関連論文リスト
- Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Hypergraph Learning based Recommender System for Anomaly Detection, Control and Optimization [0.0]
本稿では,(a)離散ハイパーグラフ構造の連成学習のための自己適応型異常検出フレームワークと,(b)相互依存型センサ間の時間的傾向と空間的関係をモデル化する。
このフレームワークは、ハイパーグラフ構造データのリレーショナル帰納バイアスを利用して、ポイントワイズ・シングルステップ・アヘッド予測を学習する。
ルート原因分析のための異常情報伝搬に基づく計算ハイパーグラフを導出し、オフラインで最適な予測制御ポリシを通じて推奨する。
論文 参考訳(メタデータ) (2024-08-21T06:04:02Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Collaborative Knowledge Infusion for Low-resource Stance Detection [83.88515573352795]
姿勢検出モデルを支援するために、ターゲット関連の知識がしばしば必要である。
低リソース姿勢検出タスクに対する協調的知識注入手法を提案する。
論文 参考訳(メタデータ) (2024-03-28T08:32:14Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Self-Calibrating Anomaly and Change Detection for Autonomous Inspection
Robots [0.07366405857677225]
視覚異常または変化検出アルゴリズムは、参照画像やデータセットとは異なる画像の領域を特定する。
本研究では,事前の未知環境における異常や変化を検出するための総合的なディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-26T09:52:12Z) - Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection [14.631674952942207]
グラフ異常検出のための自己教師付き学習法(SL-GAD)を提案する。
提案手法では,対象ノードに基づいて異なるコンテキストサブグラフを構築し,生成属性回帰とマルチビューコントラスト学習という2つのモジュールを用いて異常検出を行う。
提案手法は,6つのベンチマークデータセットに対して広範な実験を行い,提案手法が最先端の手法よりも大きなマージンで優れていることを示した。
論文 参考訳(メタデータ) (2021-08-23T02:15:21Z) - Graph Neural Network-Based Anomaly Detection in Multivariate Time Series [17.414474298706416]
我々は,高次元時系列データにおける異常を検出する新しい方法を開発した。
我々のアプローチは、構造学習アプローチとグラフニューラルネットワークを組み合わせている。
本研究では,本手法がベースラインアプローチよりも高精度に異常を検出することを示す。
論文 参考訳(メタデータ) (2021-06-13T09:07:30Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
畳み込みニューラルネットワーク(CNN)技術は、画像ベースの異常検出アプリケーションにおいて非常に有用であることが証明されている。
モデル・オブ・ノーマル性(MoN)を用いた類似度尺度に基づく異常検出のための伝達学習フレームワークを提案する。
提案したしきい値設定により,大幅な性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2020-11-12T05:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。