AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation
- URL: http://arxiv.org/abs/2203.09516v3
- Date: Wed, 29 Mar 2023 21:33:16 GMT
- Title: AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation
- Authors: Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh and Shubham Tulsiani
- Abstract summary: Powerful priors allow us to perform inference with insufficient information.
We propose an autoregressive prior for 3D shapes to solve multimodal 3D tasks such as shape completion, reconstruction, and generation.
- Score: 29.018733252938926
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Powerful priors allow us to perform inference with insufficient information.
In this paper, we propose an autoregressive prior for 3D shapes to solve
multimodal 3D tasks such as shape completion, reconstruction, and generation.
We model the distribution over 3D shapes as a non-sequential autoregressive
distribution over a discretized, low-dimensional, symbolic grid-like latent
representation of 3D shapes. This enables us to represent distributions over 3D
shapes conditioned on information from an arbitrary set of spatially anchored
query locations and thus perform shape completion in such arbitrary settings
(e.g., generating a complete chair given only a view of the back leg). We also
show that the learned autoregressive prior can be leveraged for conditional
tasks such as single-view reconstruction and language-based generation. This is
achieved by learning task-specific naive conditionals which can be approximated
by light-weight models trained on minimal paired data. We validate the
effectiveness of the proposed method using both quantitative and qualitative
evaluation and show that the proposed method outperforms the specialized
state-of-the-art methods trained for individual tasks. The project page with
code and video visualizations can be found at
https://yccyenchicheng.github.io/AutoSDF/.
Related papers
- DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Make-A-Shape: a Ten-Million-scale 3D Shape Model [52.701745578415796]
This paper introduces Make-A-Shape, a new 3D generative model designed for efficient training on a vast scale.
We first innovate a wavelet-tree representation to compactly encode shapes by formulating the subband coefficient filtering scheme.
We derive the subband adaptive training strategy to train our model to effectively learn to generate coarse and detail wavelet coefficients.
arXiv Detail & Related papers (2024-01-20T00:21:58Z) - DiffComplete: Diffusion-based Generative 3D Shape Completion [114.43353365917015]
We introduce a new diffusion-based approach for shape completion on 3D range scans.
We strike a balance between realism, multi-modality, and high fidelity.
DiffComplete sets a new SOTA performance on two large-scale 3D shape completion benchmarks.
arXiv Detail & Related papers (2023-06-28T16:07:36Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - Learning Compositional Shape Priors for Few-Shot 3D Reconstruction [36.40776735291117]
We show that complex encoder-decoder architectures exploit large amounts of per-category data.
We propose three ways to learn a class-specific global shape prior, directly from data.
Experiments on the popular ShapeNet dataset show that our method outperforms a zero-shot baseline by over 40%.
arXiv Detail & Related papers (2021-06-11T14:55:49Z) - Adjoint Rigid Transform Network: Task-conditioned Alignment of 3D Shapes [86.2129580231191]
Adjoint Rigid Transform (ART) Network is a neural module which can be integrated with a variety of 3D networks.
ART learns to rotate input shapes to a learned canonical orientation, which is crucial for a lot of tasks.
We will release our code and pre-trained models for further research.
arXiv Detail & Related papers (2021-02-01T20:58:45Z) - DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes [43.853000396885626]
We propose a learning-based framework for predicting sharp geometric features in sampled 3D shapes.
By fusing the result of individual patches, we can process large 3D models, which are impossible to process for existing data-driven methods.
arXiv Detail & Related papers (2020-11-30T18:21:00Z) - Towards General Purpose Geometry-Preserving Single-View Depth Estimation [1.9573380763700712]
Single-view depth estimation (SVDE) plays a crucial role in scene understanding for AR applications, 3D modeling, and robotics.
Recent works have shown that a successful solution strongly relies on the diversity and volume of training data.
Our work shows that a model trained on this data along with conventional datasets can gain accuracy while predicting correct scene geometry.
arXiv Detail & Related papers (2020-09-25T20:06:13Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z) - 3D Shape Segmentation with Geometric Deep Learning [2.512827436728378]
We propose a neural-network based approach that produces 3D augmented views of the 3D shape to solve the whole segmentation as sub-segmentation problems.
We validate our approach using 3D shapes of publicly available datasets and of real objects that are reconstructed using photogrammetry techniques.
arXiv Detail & Related papers (2020-02-02T14:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.