Make-A-Shape: a Ten-Million-scale 3D Shape Model
- URL: http://arxiv.org/abs/2401.11067v2
- Date: Tue, 10 Sep 2024 03:29:20 GMT
- Title: Make-A-Shape: a Ten-Million-scale 3D Shape Model
- Authors: Ka-Hei Hui, Aditya Sanghi, Arianna Rampini, Kamal Rahimi Malekshan, Zhengzhe Liu, Hooman Shayani, Chi-Wing Fu,
- Abstract summary: This paper introduces Make-A-Shape, a new 3D generative model designed for efficient training on a vast scale.
We first innovate a wavelet-tree representation to compactly encode shapes by formulating the subband coefficient filtering scheme.
We derive the subband adaptive training strategy to train our model to effectively learn to generate coarse and detail wavelet coefficients.
- Score: 52.701745578415796
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Significant progress has been made in training large generative models for natural language and images. Yet, the advancement of 3D generative models is hindered by their substantial resource demands for training, along with inefficient, non-compact, and less expressive representations. This paper introduces Make-A-Shape, a new 3D generative model designed for efficient training on a vast scale, capable of utilizing 10 millions publicly-available shapes. Technical-wise, we first innovate a wavelet-tree representation to compactly encode shapes by formulating the subband coefficient filtering scheme to efficiently exploit coefficient relations. We then make the representation generatable by a diffusion model by devising the subband coefficients packing scheme to layout the representation in a low-resolution grid. Further, we derive the subband adaptive training strategy to train our model to effectively learn to generate coarse and detail wavelet coefficients. Last, we extend our framework to be controlled by additional input conditions to enable it to generate shapes from assorted modalities, e.g., single/multi-view images, point clouds, and low-resolution voxels. In our extensive set of experiments, we demonstrate various applications, such as unconditional generation, shape completion, and conditional generation on a wide range of modalities. Our approach not only surpasses the state of the art in delivering high-quality results but also efficiently generates shapes within a few seconds, often achieving this in just 2 seconds for most conditions. Our source code is available at https://github.com/AutodeskAILab/Make-a-Shape.
Related papers
- Wavelet Latent Diffusion (Wala): Billion-Parameter 3D Generative Model with Compact Wavelet Encodings [15.2983201224858]
Large-scale 3D generative models require substantial computational resources yet often fall short in capturing fine details and complex geometries at high resolutions.
We introduce a novel approach called Wavelet Latent Diffusion, or WaLa, that encodes 3D shapes into compact latent encodings.
Specifically, we compress a $2563$ signed distance field into a $123 times 4$ latent grid, achieving an impressive 2427x compression ratio with minimal loss of detail.
Our models, both conditional and unconditional, contain approximately one billion parameters and successfully generate high-quality 3D shapes at $2563$
arXiv Detail & Related papers (2024-11-12T18:49:06Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - Breathing New Life into 3D Assets with Generative Repainting [74.80184575267106]
Diffusion-based text-to-image models ignited immense attention from the vision community, artists, and content creators.
Recent works have proposed various pipelines powered by the entanglement of diffusion models and neural fields.
We explore the power of pretrained 2D diffusion models and standard 3D neural radiance fields as independent, standalone tools.
Our pipeline accepts any legacy renderable geometry, such as textured or untextured meshes, and orchestrates the interaction between 2D generative refinement and 3D consistency enforcement tools.
arXiv Detail & Related papers (2023-09-15T16:34:51Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
We present a significant breakthrough in 3D shape generation by scaling it to unprecedented dimensions.
We have developed a model with an astounding 3.6 billion trainable parameters, establishing it as the largest 3D shape generation model to date, named Argus-3D.
arXiv Detail & Related papers (2023-06-20T13:01:19Z) - Learning Versatile 3D Shape Generation with Improved AR Models [91.87115744375052]
Auto-regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space.
We propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids.
arXiv Detail & Related papers (2023-03-26T12:03:18Z) - SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation [89.47132156950194]
We present a novel framework built to simplify 3D asset generation for amateur users.
Our method supports a variety of input modalities that can be easily provided by a human.
Our model can combine all these tasks into one swiss-army-knife tool.
arXiv Detail & Related papers (2022-12-08T18:59:05Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z) - Discrete Point Flow Networks for Efficient Point Cloud Generation [36.03093265136374]
Generative models have proven effective at modeling 3D shapes and their statistical variations.
We introduce a latent variable model that builds on normalizing flows to generate 3D point clouds of an arbitrary size.
For single-view shape reconstruction we also obtain results on par with state-of-the-art voxel, point cloud, and mesh-based methods.
arXiv Detail & Related papers (2020-07-20T14:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.