論文の概要: SCoT: Sense Clustering over Time: a tool for the analysis of lexical
change
- arxiv url: http://arxiv.org/abs/2203.09892v1
- Date: Fri, 18 Mar 2022 12:04:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-21 14:23:36.766961
- Title: SCoT: Sense Clustering over Time: a tool for the analysis of lexical
change
- Title(参考訳): scot: 時間経過によるセンスクラスタリング: 語彙変化の分析ツール
- Authors: Christian Haase, Saba Anwar, Seid Muhie Yimam, Alexander Friedrich,
Chris Biemann
- Abstract要約: 我々は、語彙変化を分析する新しいネットワークベースのツールであるSense Clustering over Time (SCoT)を提示する。
SCoTは、単語の意味を類似した単語の集合として表現する。
危機の意味の変化に関するヨーロッパの研究で、うまく使われてきた」。
- 参考スコア(独自算出の注目度): 79.80787569986283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Sense Clustering over Time (SCoT), a novel network-based tool for
analysing lexical change. SCoT represents the meanings of a word as clusters of
similar words. It visualises their formation, change, and demise. There are two
main approaches to the exploration of dynamic networks: the discrete one
compares a series of clustered graphs from separate points in time. The
continuous one analyses the changes of one dynamic network over a time-span.
SCoT offers a new hybrid solution. First, it aggregates time-stamped documents
into intervals and calculates one sense graph per discrete interval. Then, it
merges the static graphs to a new type of dynamic semantic neighbourhood graph
over time. The resulting sense clusters offer uniquely detailed insights into
lexical change over continuous intervals with model transparency and
provenance. SCoT has been successfully used in a European study on the changing
meaning of `crisis'.
- Abstract(参考訳): 我々は、語彙変化を分析する新しいネットワークベースのツールであるSense Clustering over Time (SCoT)を提示する。
SCoTは、単語の意味を類似した単語の集合として表現する。
形成、変化、消滅を可視化する。
動的ネットワークの探索には2つの主要なアプローチがある: 離散的グラフは時間内の別々の点から一連のクラスタ化されたグラフを比較する。
連続的に1つの動的ネットワークの変化を時間スパンで解析する。
SCoTは新しいハイブリッドソリューションを提供する。
まず、タイムスタンプされた文書を間隔に集約し、離散区間毎に1つのセンスグラフを計算する。
そして、静的グラフを時間とともに新しいタイプの動的セマンティック近隣グラフにマージする。
結果として得られたセンスクラスタは、モデルの透明性とプロヴァンスを備えた、連続的な間隔での語彙変化に対するユニークな詳細な洞察を提供する。
SCoTは「危機」の意味の変化に関するヨーロッパの研究で成功している。
関連論文リスト
- Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
時系列予測は、様々な領域における複雑な力学の理解と予測に不可欠である。
GridTSTは、革新的な多方向性の注意を用いた2つのアプローチの利点を組み合わせたモデルである。
このモデルは、さまざまな現実世界のデータセットに対して、常に最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-05-22T16:41:21Z) - Unified and Dynamic Graph for Temporal Character Grouping in Long Videos [31.192044026127032]
ビデオ時間的キャラクタグループ化は、ビデオ内の主要なキャラクタの出現モーメントを、そのアイデンティティに応じて特定する。
最近の研究は、教師なしクラスタリングからグラフベースのクラスタリングへと進化してきた。
時間的文字グループ化のための統一動的グラフ(UniDG)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-27T13:22:55Z) - TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification [6.76723360505692]
未定義のグラフ構造を使わずに隠蔽時間依存を抽出できる新しい時間的動的グラフネットワーク(TodyNet)を提案する。
26のUEAベンチマークデータセットの実験は、提案されたTodyNetがMTSCタスクで既存のディープラーニングベースのメソッドより優れていることを示している。
論文 参考訳(メタデータ) (2023-04-11T09:21:28Z) - Are uGLAD? Time will tell! [4.005044708572845]
条件独立グラフ(CI)を用いた多変量時系列セグメンテーションのための新しい手法を提案する。
CIグラフは、ノード間の部分的相関を表す確率的グラフィカルモデルである。
身体活動モニタリングデータを用いて実験結果を実証した。
論文 参考訳(メタデータ) (2023-03-21T07:46:28Z) - Temporal Analysis on Topics Using Word2Vec [0.0]
本研究では,トレンド検出と可視化の新しい手法を提案する。具体的には,話題の変化を時間とともにモデル化する。
この手法は、20のNews Groupsデータセットに存在する様々なメディアハウスの記事群でテストされた。
論文 参考訳(メタデータ) (2022-09-23T16:51:29Z) - Expressing Multivariate Time Series as Graphs with Time Series Attention
Transformer [14.172091921813065]
多変量時系列表現学習のための時系列注意変換器(TSAT)を提案する。
TSATを用いて、エッジ強化された動的グラフの観点から、時系列の時間情報と相互依存の両方を表現している。
TSATは、様々な予測地平線において、最先端の6つのベースライン法より明らかに優れていることを示す。
論文 参考訳(メタデータ) (2022-08-19T12:25:56Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
本稿では,時系列をネットワークに変換する既存のマッピング手法について概観する。
我々は、主要な概念的アプローチを説明し、権威的な参照を提供し、統一された表記法と言語におけるそれらの利点と限界について洞察を与える。
ごく最近の研究だが、この研究領域には大きな可能性を秘めており、今後の研究の道を開くことを目的としている。
論文 参考訳(メタデータ) (2021-10-11T13:33:18Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。