CITS: Coherent Ising Tree Search Algorithm Towards Solving Combinatorial
Optimization Problems
- URL: http://arxiv.org/abs/2203.09926v1
- Date: Wed, 9 Mar 2022 10:07:26 GMT
- Title: CITS: Coherent Ising Tree Search Algorithm Towards Solving Combinatorial
Optimization Problems
- Authors: Cen Yunuo, Das Debasis, Fong Xuanyao
- Abstract summary: This paper proposes a search algorithm by expanding search space from a Markov chain to a depth limited tree based on SA.
At each iteration, the algorithm will select the best near-optimal solution within the feasible search space by exploring along the tree in the sense of look ahead'
Our results show that above the primals SA and CIM, our high-level tree search strategy is able to provide solutions within fewer epochs for Ising formulated NP-optimization problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulated annealing (SA) attracts more attention among classical heuristic
algorithms because the solution of the combinatorial optimization problem can
be naturally mapped to the ground state of the Ising Hamiltonian. However, in
practical implementation, the annealing process cannot be arbitrarily slow and
hence, it may deviate from the expected stationary Boltzmann distribution and
become trapped in a local energy minimum. To overcome this problem, this paper
proposes a heuristic search algorithm by expanding search space from a Markov
chain to a recursive depth limited tree based on SA, where the parent and child
nodes represent the current and future spin states. At each iteration, the
algorithm will select the best near-optimal solution within the feasible search
space by exploring along the tree in the sense of `look ahead'. Furthermore,
motivated by coherent Ising machine (CIM), we relax the discrete representation
of spin states to continuous representation with a regularization term and
utilize the reduced dynamics of the oscillators to explore the surrounding
neighborhood of the selected tree nodes. We tested our algorithm on a
representative NP-hard problem (MAX-CUT) to illustrate the effectiveness of
this algorithm compared to semi-definite programming (SDP), SA, and simulated
CIM. Our results show that above the primal heuristics SA and CIM, our
high-level tree search strategy is able to provide solutions within fewer
epochs for Ising formulated NP-optimization problems.
Related papers
- LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget.
Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach enjoys significantly lower computational costs compared to baseline methods.
arXiv Detail & Related papers (2024-06-29T05:14:04Z) - Decision Diagram-Based Branch-and-Bound with Caching for Dominance and
Suboptimality Detection [9.175779296469194]
This paper presents new ingredients to speed up the search by exploiting the structure of dynamic programming models.
The key idea is to prevent the repeated expansion of nodes corresponding to the same dynamic programming states by querying expansion thresholds cached throughout the search.
Experiments show that the pruning brought by this caching mechanism allows significantly reducing the number of nodes expanded by the algorithm.
arXiv Detail & Related papers (2022-11-22T10:18:33Z) - EM's Convergence in Gaussian Latent Tree Models [22.987933817370305]
We show that the unique non-trivial point of the population log-likelihood is its global maximum.
We establish that the expectation-maximization algorithm is guaranteed to converge to it in the single latent variable case.
arXiv Detail & Related papers (2022-11-21T23:12:58Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Evolutionary Algorithm and Multifactorial Evolutionary Algorithm on
Clustered Shortest-Path Tree problem [2.578242050187029]
Clustered Shortest-Path Tree Problem (CluSPT) is an NP-hard problem.
To enhance the performance of the search process, two approaches are proposed.
arXiv Detail & Related papers (2020-10-19T08:37:18Z) - From Trees to Continuous Embeddings and Back: Hyperbolic Hierarchical
Clustering [33.000371053304676]
We present the first continuous relaxation of Dasgupta's discrete optimization problem with provable quality guarantees.
We show that even approximate solutions found with gradient descent have superior quality than agglomerative clusterings.
We also highlight the flexibility of HypHC using end-to-end training in a downstream classification task.
arXiv Detail & Related papers (2020-10-01T13:43:19Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem [2.099922236065961]
This paper introduces a new algorithm that combines the major features of RGAs and Shortest Path Tree Algorithm (SPTA) to deal with the Clustered Shortest-Path Tree Problem (CluSPT)
To evaluate the performance of the proposed algorithm, Euclidean benchmarks are selected.
arXiv Detail & Related papers (2020-05-05T08:34:58Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.