A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem
- URL: http://arxiv.org/abs/2005.04095v1
- Date: Tue, 5 May 2020 08:34:58 GMT
- Title: A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem
- Authors: Pham Dinh Thanh, Huynh Thi Thanh Binh, Do Dinh Dac, Nguyen Binh Long,
Le Minh Hai Phong
- Abstract summary: This paper introduces a new algorithm that combines the major features of RGAs and Shortest Path Tree Algorithm (SPTA) to deal with the Clustered Shortest-Path Tree Problem (CluSPT)
To evaluate the performance of the proposed algorithm, Euclidean benchmarks are selected.
- Score: 2.099922236065961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Randomized Greedy Algorithms (RGAs) are interesting approaches to solve
problems whose structures are not well understood as well as problems in
combinatorial optimization which incorporate the random processes and the
greedy algorithms. This paper introduces a new algorithm that combines the
major features of RGAs and Shortest Path Tree Algorithm (SPTA) to deal with the
Clustered Shortest-Path Tree Problem (CluSPT). In our algorithm, SPTA is used
to determine the shortest path tree in each cluster while the combination
between characteristics of the RGAs and search strategy of SPTA is used to
constructed the edges connecting clusters. To evaluate the performance of the
proposed algorithm, Euclidean benchmarks are selected. The experimental
investigations show the strengths of the proposed algorithm in comparison with
some existing algorithms. We also analyze the influence of the parameters on
the performance of the algorithm.
Related papers
- The role of quantum and classical correlations in shrinking algorithms for optimization [0.0]
We study the performance of a shrinking algorithm for optimization problems (COPs)
We compare the performance of the algorithm equipped with correlations from the quantum approximate optimization algorithm (QAOA) as well as the classical linear programming (LP) and semi-definite programming (SDP) relaxations.
Our results indicate that LP outperforms all other approaches for low-density instances, while SDP excels for high-density problems.
arXiv Detail & Related papers (2024-04-26T08:29:04Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - A Metaheuristic Algorithm for Large Maximum Weight Independent Set
Problems [58.348679046591265]
Given a node-weighted graph, find a set of independent (mutually nonadjacent) nodes whose node-weight sum is maximum.
Some of the graphs airsing in this application are large, having hundreds of thousands of nodes and hundreds of millions of edges.
We develop a new local search algorithm, which is a metaheuristic in the greedy randomized adaptive search framework.
arXiv Detail & Related papers (2022-03-28T21:34:16Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and
Hierarchical Spatial Clustering [6.4805900740861]
We introduce a new notion of well-separation to reduce the work and space of our algorithm for HDBSCAN$*$.
We show that our algorithms are theoretically efficient: they have work (number of operations) matching their sequential counterparts, and polylogarithmic depth (parallel time)
Our experiments on large real-world and synthetic data sets using a 48-core machine show that our fastest algorithms outperform the best serial algorithms for the problems by 11.13--55.89x, and existing parallel algorithms by at least an order of magnitude.
arXiv Detail & Related papers (2021-04-02T16:05:00Z) - A bi-level encoding scheme for the clustered shortest-path tree problem
in multifactorial optimization [1.471992435706872]
The Clustered Shortest-Path Tree Problem (CluSPT) plays an important role in various types of optimization problems in real-life.
Recently, some Multifactorial Evolutionary Algorithm (MFEA) have been introduced to deal with the CluSPT.
This paper describes a MFEA-based approach to solve the CluSPT.
arXiv Detail & Related papers (2021-02-12T13:36:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Exploring search space trees using an adapted version of Monte Carlo
tree search for combinatorial optimization problems [0.6882042556551609]
This approach makes use of a algorithm to explore the search space tree of a problem instance.
The algorithm is based on Monte Carlo tree search, a popular algorithm in game playing that is used to explore game trees.
arXiv Detail & Related papers (2020-10-22T08:33:58Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z) - Parameterized Complexity Analysis of Randomized Search Heuristics [16.759797540118665]
This chapter compiles a number of results that apply the theory of parameterized running-time analysis of randomized algorithms.
We outline the main results and proof techniques for a collection of randomized searchs tasked to solve NP-hard optimization problems.
arXiv Detail & Related papers (2020-01-15T03:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.