論文の概要: Analyzing EEG Data with Machine and Deep Learning: A Benchmark
- arxiv url: http://arxiv.org/abs/2203.10009v1
- Date: Fri, 18 Mar 2022 15:18:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-21 16:42:26.029108
- Title: Analyzing EEG Data with Machine and Deep Learning: A Benchmark
- Title(参考訳): 機械学習とディープラーニングによる脳波データ分析:ベンチマーク
- Authors: Danilo Avola, Marco Cascio, Luigi Cinque, Alessio Fagioli, Gian Luca
Foresti, Marco Raoul Marini, Daniele Pannone
- Abstract要約: 本稿では,脳波信号解析に焦点をあて,脳波信号分類のための機械学習と深層学習のベンチマークを文献で初めて行った。
実験では,多層パーセプトロン,畳み込みニューラルネットワーク,長期記憶,ゲートリカレントユニットの4つのモデルを用いた。
- 参考スコア(独自算出の注目度): 23.893444154059324
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Nowadays, machine and deep learning techniques are widely used in different
areas, ranging from economics to biology. In general, these techniques can be
used in two ways: trying to adapt well-known models and architectures to the
available data, or designing custom architectures. In both cases, to speed up
the research process, it is useful to know which type of models work best for a
specific problem and/or data type. By focusing on EEG signal analysis, and for
the first time in literature, in this paper a benchmark of machine and deep
learning for EEG signal classification is proposed. For our experiments we used
the four most widespread models, i.e., multilayer perceptron, convolutional
neural network, long short-term memory, and gated recurrent unit, highlighting
which one can be a good starting point for developing EEG classification
models.
- Abstract(参考訳): 現在、機械学習とディープラーニングの技術は、経済学から生物学まで様々な分野で広く使われている。
一般的に、これらのテクニックは、よく知られたモデルとアーキテクチャを利用可能なデータに適応させようとするか、カスタムアーキテクチャを設計するかの2つの方法で使用できる。
どちらのケースでも、研究プロセスのスピードアップには、特定の問題やデータタイプに最適なモデルの種類を知ることが有用である。
本稿では,脳波信号解析に注目し,文献で初めて,脳波信号分類のための機械学習とディープラーニングのベンチマークを提案する。
実験では、多層パーセプトロン、畳み込みニューラルネットワーク、長期記憶、ゲートリカレントユニットの4つの最も広範なモデルを使用し、脳波分類モデルを開発するための出発点として、どれがよいかを強調した。
関連論文リスト
- hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
脳波の既存のDLベースのモデリング手法に2つの課題がある。
被験者間の高いばらつきと低信号対雑音比は、脳波データの良好な品質を確保するのを困難にしている。
本稿では,高忠実度脳波再構成問題を対象とした2つの変分オートエンコーダモデル,すなわちvEEGNet-ver3とhvEEGNetを提案する。
論文 参考訳(メタデータ) (2023-11-20T15:36:31Z) - Understanding learning from EEG data: Combining machine learning and
feature engineering based on hidden Markov models and mixed models [0.0]
前頭蓋振動は空間ナビゲーションや記憶において重要な役割を担っていると考えられている。
EEGデータセットは非常に複雑で、神経信号の変化を解釈しにくくする。
本稿では,脳波データから特徴を抽出するために隠れマルコフと線形混合効果モデルを提案する。
論文 参考訳(メタデータ) (2023-11-14T12:24:12Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
本研究の目的は、コンピュータビジョン2次元オブジェクト分類タスクに使用される最も一般的な機械学習およびディープラーニング技術を分析し比較することである。
まず、視覚語モデルと深部畳み込みニューラルネットワーク(DCNN)の理論的背景を示す。
次に、Bag of Visual Wordsモデル、VGG16 CNN Architectureを実装します。
論文 参考訳(メタデータ) (2022-04-11T11:34:43Z) - Spatio-Temporal Analysis of Transformer based Architecture for Attention
Estimation from EEG [2.7076510056452654]
脳波信号から特定のタスクに与えられた注意状態、すなわち注意度を復元できる新しいフレームワークを提案する。
従来は電極による脳波の空間的関係をよく検討していたが, トランスフォーマネットワークを用いた空間的・時間的情報の利用も提案する。
提案したネットワークは、2つの公開データセットでトレーニングされ、検証され、最先端のモデルよりも高い結果が得られる。
論文 参考訳(メタデータ) (2022-04-04T08:05:33Z) - BENDR: using transformers and a contrastive self-supervised learning
task to learn from massive amounts of EEG data [15.71234837305808]
言語モデリング(LM)の手法とアーキテクチャを脳波モデリング(EM)に適用する方法を検討する。
1つの事前学習モデルが、異なるハードウェアで記録された全く新しい生の脳波シーケンスをモデル化できることがわかった。
このモデルの内部表現とアーキテクチャ全体は、さまざまな下流のBCIおよびEEG分類タスクに微調整することができる。
論文 参考訳(メタデータ) (2021-01-28T14:54:01Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - MetaDistiller: Network Self-Boosting via Meta-Learned Top-Down
Distillation [153.56211546576978]
本研究では,ラベル生成器を用いて高い適合性を有するソフトターゲットを生成することを提案する。
このラベルジェネレータを最適化するためにメタ学習技術を用いることができる。
実験は CIFAR-100 と ILSVRC2012 の2つの標準分類ベンチマークで実施された。
論文 参考訳(メタデータ) (2020-08-27T13:04:27Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Deep transfer learning for improving single-EEG arousal detection [63.52264764099532]
2つのデータセットは、単一のEEGモデルでパフォーマンスが低下する原因となる、まったく同じ設定を含んでいない。
単チャンネル脳波データのためのアーキテクチャを構築するために,ベースラインモデルをトレーニングし,最初の2層を置き換える。
細調整戦略を用いて,本モデルはベースラインモデルと同等の性能を示し,同等の単一チャネルモデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-10T16:51:06Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。