Half-Inverse Gradients for Physical Deep Learning
- URL: http://arxiv.org/abs/2203.10131v1
- Date: Fri, 18 Mar 2022 19:11:04 GMT
- Title: Half-Inverse Gradients for Physical Deep Learning
- Authors: Patrick Schnell, Philipp Holl, Nils Thuerey
- Abstract summary: Integrating differentiable physics simulators into the training process can greatly improve the quality of results.
The gradient-based solvers have a profound effect on the gradient flow as manipulating scales in magnitude and direction is an inherent property of many physical processes.
In this work, we analyze the characteristics of both physical and neural network optimizations to derive a new method that does not suffer from this phenomenon.
- Score: 25.013244956897832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works in deep learning have shown that integrating differentiable
physics simulators into the training process can greatly improve the quality of
results. Although this combination represents a more complex optimization task
than supervised neural network training, the same gradient-based optimizers are
typically employed to minimize the loss function. However, the integrated
physics solvers have a profound effect on the gradient flow as manipulating
scales in magnitude and direction is an inherent property of many physical
processes. Consequently, the gradient flow is often highly unbalanced and
creates an environment in which existing gradient-based optimizers perform
poorly. In this work, we analyze the characteristics of both physical and
neural network optimizations to derive a new method that does not suffer from
this phenomenon. Our method is based on a half-inversion of the Jacobian and
combines principles of both classical network and physics optimizers to solve
the combined optimization task. Compared to state-of-the-art neural network
optimizers, our method converges more quickly and yields better solutions,
which we demonstrate on three complex learning problems involving nonlinear
oscillators, the Schroedinger equation and the Poisson problem.
Related papers
- Sparks of Quantum Advantage and Rapid Retraining in Machine Learning [0.0]
In this study, we optimize a powerful neural network architecture for representing complex functions with minimal parameters.
We introduce rapid retraining capability, enabling the network to be retrained with new data without reprocessing old samples.
Our findings suggest that with further advancements in quantum hardware and algorithm optimization, quantum-optimized machine learning models could have broad applications.
arXiv Detail & Related papers (2024-07-22T19:55:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
It is proposed to upgrade piece-wise linear neural network models with physics informed knowledge for optimization problems with neural network models embedded.
For all cases, physics-informed trained neural network based optimal results are closer to global optimality.
arXiv Detail & Related papers (2023-02-02T10:14:54Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Physical Gradients for Deep Learning [101.36788327318669]
We find that state-of-the-art training techniques are not well-suited to many problems that involve physical processes.
We propose a novel hybrid training approach that combines higher-order optimization methods with machine learning techniques.
arXiv Detail & Related papers (2021-09-30T12:14:31Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
We present a method for efficient differentiable simulation of articulated bodies.
This enables integration of articulated body dynamics into deep learning frameworks.
We show that reinforcement learning with articulated systems can be accelerated using gradients provided by our method.
arXiv Detail & Related papers (2021-09-16T04:48:13Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.