Sparks of Quantum Advantage and Rapid Retraining in Machine Learning
- URL: http://arxiv.org/abs/2407.16020v4
- Date: Mon, 5 Aug 2024 02:01:12 GMT
- Title: Sparks of Quantum Advantage and Rapid Retraining in Machine Learning
- Authors: William Troy,
- Abstract summary: In this study, we optimize a powerful neural network architecture for representing complex functions with minimal parameters.
We introduce rapid retraining capability, enabling the network to be retrained with new data without reprocessing old samples.
Our findings suggest that with further advancements in quantum hardware and algorithm optimization, quantum-optimized machine learning models could have broad applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of quantum computing holds the potential to revolutionize various fields by solving complex problems more efficiently than classical computers. Despite this promise, practical quantum advantage is hindered by current hardware limitations, notably the small number of qubits and high noise levels. In this study, we leverage adiabatic quantum computers to optimize Kolmogorov-Arnold Networks, a powerful neural network architecture for representing complex functions with minimal parameters. By modifying the network to use Bezier curves as the basis functions and formulating the optimization problem into a Quadratic Unconstrained Binary Optimization problem, we create a fixed-sized solution space, independent of the number of training samples. This strategy allows for the optimization of an entire neural network in a single training iteration in which, due to order of operations, a majority of the processing is done using a collapsed version of the training dataset. This inherently creates extremely fast training speeds, which are validated experimentally, compared to classical optimizers including Adam, Stochastic Gradient Descent, Adaptive Gradient, and simulated annealing. Additionally, we introduce a novel rapid retraining capability, enabling the network to be retrained with new data without reprocessing old samples, thus enhancing learning efficiency in dynamic environments. Experiments on retraining demonstrate a hundred times speed up using adiabatic quantum computing based optimization compared to that of the gradient descent based optimizers, with theoretical models allowing this speed up to be much larger! Our findings suggest that with further advancements in quantum hardware and algorithm optimization, quantum-optimized machine learning models could have broad applications across various domains, with initial focus on rapid retraining.
Related papers
- Surrogate-guided optimization in quantum networks [0.9148747049384086]
We propose an optimization algorithm to improve the design and performance of quantum communication networks.
Our framework allows for more comprehensive quantum network studies, integrating surrogate-assisted optimization with existing quantum network simulators.
arXiv Detail & Related papers (2024-07-24T11:55:18Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
Gradual Optimization Learning Framework (GOLF) for energy minimization with neural networks significantly reduces the required additional data.
Our results demonstrate that the neural network trained with GOLF performs on par with the oracle on a benchmark of diverse drug-like molecules.
arXiv Detail & Related papers (2023-11-05T11:48:08Z) - Convergence and scaling of Boolean-weight optimization for hardware
reservoirs [0.0]
We analytically derive the scaling laws for highly efficient Coordinate Descent applied to optimize the readout layer of a random recurrently connection neural network.
Our results perfectly reproduce the convergence and scaling of a large-scale photonic reservoir implemented in a proof-of-concept experiment.
arXiv Detail & Related papers (2023-05-13T12:15:25Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Half-Inverse Gradients for Physical Deep Learning [25.013244956897832]
Integrating differentiable physics simulators into the training process can greatly improve the quality of results.
The gradient-based solvers have a profound effect on the gradient flow as manipulating scales in magnitude and direction is an inherent property of many physical processes.
In this work, we analyze the characteristics of both physical and neural network optimizations to derive a new method that does not suffer from this phenomenon.
arXiv Detail & Related papers (2022-03-18T19:11:04Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
We explore which quantum algorithms for optimization might be most practical to try out on a small fault-tolerant quantum computer.
Our results discourage the notion that any quantum optimization realizing only a quadratic speedup will achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2020-07-14T22:54:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.