Optimal Dose-Limited Phase Estimation without Entanglement
- URL: http://arxiv.org/abs/2203.10137v2
- Date: Fri, 22 Nov 2024 19:49:55 GMT
- Title: Optimal Dose-Limited Phase Estimation without Entanglement
- Authors: Stewart A. Koppell, Mark A. Kasevich,
- Abstract summary: In a lossy medium, there is an upper bound on the attainable information per particle sent through the phase shift.
Previously, only entanglement-enhanced measurements have been shown to saturate this bound.
We introduce a measurement scheme which can saturate the bound without relying on entanglement.
- Score: 0.0
- License:
- Abstract: Phase estimation is one of the most important facets of quantum metrology, with applications in sensing, microscopy, and quantum computation. When estimating a phase shift in a lossy medium, there is an upper bound on the attainable information per particle sent through the phase shift. Previously, only entanglement-enhanced measurements have been shown to saturate this bound. We introduce a measurement scheme which can saturate the bound without relying on entanglement.
Related papers
- Homodyne detection is optimal for quantum interferometry with path-entangled coherent states [0.0]
homodyning schemes analyzed here achieve optimality (saturate the quantum Cram'er-Rao bound)
In the presence of photon loss, the schemes become suboptimal, but we find that their performance is independent of the phase to be measured.
arXiv Detail & Related papers (2024-05-22T00:25:02Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Optimality of Lindblad unfolding in measurement phase transitions [0.0]
Entanglement phase transitions in hybrid quantum circuits describe individual quantum trajectories rather than the measurement-averaged ensemble.
We show that measurement-averaged destruction of Bell state entanglement is a useful proxy for determining which hybrid circuit yields the lowest-entanglement dynamics.
arXiv Detail & Related papers (2021-11-22T18:06:31Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Single-shot non-Gaussian Measurements for Optical Phase Estimation [0.0]
We show strategies for single-shot measurements for ab initio phase estimation of coherent states.
These strategies surpass the sensitivity limit of heterodyne measurement and approach the Cramer-Rao lower bound for coherent states.
This is, to our knowledge, the most sensitive single-shot measurement of an unknown phase encoded in optical coherent states.
arXiv Detail & Related papers (2020-08-18T23:12:34Z) - Quantum-enhanced stochastic phase estimation with SU(1,1) interferometer [3.0440082886830475]
There is a standard quantum limit for phase estimation, which can be obtained with the Mach-Zehnder interferometer and coherent input state.
Here, we show that the method with the SU (1,1) interferometer can achieve the fundamental quantum scaling, surpass the Heisenberg scaling, and surpass the canonical measurement.
arXiv Detail & Related papers (2020-08-07T03:03:36Z) - Unsupervised machine learning of quantum phase transitions using
diffusion maps [77.34726150561087]
We show that the diffusion map method, which performs nonlinear dimensionality reduction and spectral clustering of the measurement data, has significant potential for learning complex phase transitions unsupervised.
This method works for measurements of local observables in a single basis and is thus readily applicable to many experimental quantum simulators.
arXiv Detail & Related papers (2020-03-16T18:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.